《正数与负数》教案【优秀26篇】9-2-63
举一反三思维拓展经过上面的讨论交流,学生对为什么要引人负数,对怎样用正数和负数表示两种相反意义的量有了初步的理解,这里给大家分享一些关于初中数学正负数教案,方便大家学习。
《正负数》教案 1
[设计理念]:
《数学课程标准》指出:教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。本节课重在让学生在自主探究、合作交流学习过程中去发现、感悟正、负数的秘密和魅力,体验学习数学的乐趣,感受到学习数学知识的价值。
[教学内容]: 北师大课程标准试验教科书第七册第89----90页。
[教材分析]:
很久以来,负数的教学一直安排在中学教学的起始阶段,现在考虑到负数在生活中的广泛应用,学生在日常生活中已经接触了一些负数,有了初步认识负数的生活基础。因此《数学课程标准》安排在小学的第二学段初步认识负数,这是小学阶段数学教学新增加的内容。本节内容意在让学生在熟悉的生活情境中初步认识负数,感受学习的内容就在我们的身边,拓展对数概念的认识。了解负数的意义,会用负数表示一些日常生活中的问题,为第三学段进一步理解有理数的意义和运算打下良好的基础。
[学情分析]:
“负数”这一概念虽然是第一次出现且比较抽象,但学生对此并不是一无所知。本班学生对于正、负数已经有了一定的生活经验。能结合生活情境初步了解负数的意义,基本能读、写负数。
[教学目标]:
1、知识与技能:在熟悉的生活情境中,了解负数的意义,学会用正、负数表示日常生活中具有相反意义的量;会正确地读、写负数。
2、过程与方法:使学生在熟悉的生活情境中,以自主探究、自主合作、自主评价等自我学习方式,让学生在交流中进一步完善对数的认识。经历数学化、符号化的过程,体会负数产生的必要性。
3、情感、态度和价值观:让学生感受正、负数和生活的密切联系,享受自主性、创造性学习的乐趣。
[教学重点]:了解正、负数的意义,应用正、负数表示生活中具有相反意义的量。
[教学难点]:了解负数的意义及0的内涵。
[教学方式]自主探究、合作分享。
[教、学准备]:师:卡片,小黑板
生:课前自主预习并收集生活中正、负数的数学信息。
[教学过程]:
一、利用旧知,创设情境,自探新知(让学生初步自主探究并分享正、负数的秘密)
1、回忆前面所学内容温度计绘制数轴
师:同学们,我们昨天学习、了解了温度,在温度的学习中我们知道了0是什么?
生:0是零上温度和零下温度的分界点。
师:那么零上温度和零下温度是怎么记录的?请举例(同时老师在黑板上画一条直线,把学生举的例子在线上表示)
生1:零上9度记作+9℃,零下5度记作—5℃。
生2:零上3度记作+3℃,零下8度记作—8℃。
......
师:零上温度和零下温度表示的是一组什么样的量?(借助数轴)
生:是一组相反意义的量
2、明确概念,了解正、负数的读法和写法。
师:0左边的数和右边的数还有其他的读法吗?
生1:左边的数读加几,右边的读减几(自定向)
生2:不对,应该读正几,负几。
追问:为什么读作正几、负几。
生1:我是在自学过程中发现的。
生2:我是在在昨天回家汇报学习情况时,妈妈告诉我的。
(师顺势讲解:加号和减号和过去的意义不同,加号叫做正号,减号叫做负号。)
〈 板书:+:正号 — :负号〉
师:大家一起来读一读。(+9,+3,—5,—8)
师:像左边这样的数我们叫做什么?(正数)〈左边板书:正数〉
像右边这样的数我们叫什么?(负数)〈右边板书:负数〉
〈师板书名称:正数 负数〉
师:那么0呢?
生:0既不是正数,也不是负数;
师:那么0是正、负数的。
生齐答:分界点。
<师在0的下面板书:分界点>
追问:我们以前学习的0表示什么?
生1:表示没有。
生2:表示起点。
练习:
抢答:《卡片》+6.8、—1.5、+56、—100是正数还是负数。
抢读:《卡片》—12、12;+36、36
3、自主探究,发现交流正、负数的秘密。
(1)师:同学们请仔细观察这条数轴,然后小组内交流你发现了什么?
〈留足时间让学生自主在数轴上去发现:正数、负数也是表示相反意义的量;正数、负数是无限的;所有的正数比0大,所有的负数比0小;正、负数大小的比较〉
生:独立观察、思考后交流各自的发现。(教师走进学生倾听学生的发现)
(2)汇报交流内容
师:下面请各小组交流你们的精彩发现。
生1:我们组发现了正数有无穷多个、负数是也一样;
生2:我们组发现了正数比0大,负数比0小。
生3:我们组发现了越往左边的正数越大,越往右边的负数越小。
师:引导学生小结《适当板书》
同学们发现了正负数中这么多的秘密:0既不是。(正数),也不是。(负数);正数、负数是。(无限的);所有的正数比0...(大),所有的负数比0...(小);正、负数大小的比较。
(3)巩固练习《小黑板出示》
1、填空
(1)比0大的数用( )表示,比0小的数用( )表示。
(2)0既不是( )数,也不是( )数。
2、判断
(1)+0为正数,—0为负数。 ( )
(2)8读作负八。 ( )
(3)+15可以写作15。 ( )
(4)—2,—5,—10,—100,都是负数。( )
(5)0表示什么也没有,0比负数小。 ( )
(6)+5和—5表示的意思是不一样。 ( )
3、在○里填上“>”“<”或“=”。
0○—3 0○—6 —3○—2
8○—80 9○—9 +7○7
二、结合生活、交流分享、运用新知(让学生分享正、负数在生活中的广泛运用。)
师:那负数在生活中有什么应用呢?请把你课前收集到的信息进行最简洁的记录并交流。
1、整理自己收集到的信息
2、小组交流
3、全班交流
生1:我找到的是股市行情:星期一是2236.41点,星期二2201.51点,跌了34.9点,星期三是2216.81点,涨了15.3点。我把跌了34.9点记作-34.9点,把涨了15.3点记作+15.3点。
生2:我爸爸单位9月15日买了20个灯泡,这几天用坏了6个灯泡。记录成爸爸单位9月15日+20个,这几天—6个。
生3:我听写时写对了5个,写错了5个。记录成听写时,+5个,—5个。
生4:我在妈妈的工资本上发现每月5号好发1560元,妈妈每次取钱后工资本上记录的是—200、—100
......
师:同学们表现真出色,收集了这么的信息,原来在生活中有许多事情我们都在运用正负数作记录。这样做有什么好处。
生1:可以节约记录时间。
生2:可以让别人快速明白。
<小黑板出示:机动题根据时间多少做>
师:对,省时、省力。老师也收集了些信息想与大家一起分享。请完成小黑板上的内容:
1、电梯中的正、负数。
叔叔上五楼开会,阿姨到地下二楼取车,应按哪两个键?
2、海拔高度中的正、负数。
珠穆朗玛峰比海平面高出8844.43米,记作“+8844.43米”;
吐鲁番盆地比海平面低155米,记作_____米。
3、方向中的正负数。
下图中,每个小格代表1米,小华开始的位置在0处。
(1)小华从0点向东行5米,表示为+5,那么从0点向西行3米,表示为( )米;(2)如果小华的位置是7米,说明他是向( )行( )米。(3)如果小华的位置是-8米,说明他是向( )行( )米。
4、运动中的正负数
刘翔在第十届世界田径锦标赛半决赛中,110米栏的成绩是13.42秒,当时赛场风速为每秒-0.4米。(1)小组讨论:风速怎么还有负的?(2)反馈并组织学生进行简要表演。
三、课堂小结:
在今天的课堂上,我们只是初步的认识了正、负数,〈板书课题:正负数〉其实负数在我们生活中还有着广泛的应用。希望同学们能用数学的眼光观察生活、走进生活,去发现更多更有趣的知识。
初中数学《正数和负数》教案 2
title 2/title
一、教学目标
1.借助生活中的实例理解有理数的意义,体会负数引入的必要性和有理数应用的广泛性。
2.会判断一个数是正数还是负数,能用正负数表示生活中具有相反意义的量。
二、教学设计
通过电脑动画出示某班举行知识竞赛的得分情况,让学生从计算比赛得分的动态情境中,接触负数的概念,引出“不够减得出负数”,再通过“议一议”进一步体会负数的意义,鼓励学生自己寻找生活中的例子,并在寻求实例的过程中体会负数引人的必要性,教师选择学生熟悉的场景开展讨论,通过实例的讨论分析使学生认识到用正、负数可以表示具有相反意义的量。
三、教学重点与难点
1.有理数的意义,负数的引入
2.能灵活运用正负数表示生活中具有相反意义的量。
四、课时安排
1课时
五、教学方法
讨论法、探究法、讲授法、观察法。
六、教学思路
(一)、通过电脑动画情节的观看,让学生了解带“一”号的数,从而引人负数
动画内容:
评分标准是:答对一题加10分、答错一题扣10分,不回答得0分;每个队的基本分均为0分。
答题情况如下表:
1.每个代表队的最后得分是多少?你是怎么表示的?与同伴交流
2.教学中教师鼓励学生进行充分思考,给出各自的表示方法,并进行交流
3.讲授:上面出现了比0低的得分,用带“-”号的数表示(读作负),比0高的得分,用带“+”号的数表示(读作正)。
这样,我们就可以用带有“+”号与“-”号的数表示各队的得分情况。
(二)、运用深究法,同时倡导学生寻求带有“-”号的实例,激发学生学习兴趣,培并学生热爱祖国,热爱科学的情感
师问:生活中你们见过带“-”号的数吗?请同学举例,与同伴交流。
生答:四川盆地海拔高一114米,某企业的亏损额等等都用带“-”号的数来表示。
师总结:同学们回答得都不错。
(三)、指导学生理解相反意义的量,并会识别正、负数
1.先想一想:具有相反意义的量。
2.再议一议。
3.做做:用正数和负数表示一些意义相反的量。
出示例1:(1)在知识竞赛中,如果用十10分表示加10分,那么扣20分怎样表示?
(2)某人转动转盘,如果用十5表示沿逆时针方向转了5回,那么沿顺时针方向转了12圈怎样表示?
(3)在某次乒乓球质量检测中,一只乒乓球超出标准质量0.02克记作十0.02克,那么一0.03克表示什么?
解:(1)扣20分记作:-20分;
(2)沿顺时针方向转12圈记作一12圈;
(3)-0.03克表示乒乓球的质量低于标准质量0.03克.
分析:(1)准基:0分;
(2)准基:转盘静止不动;
(3)准基:一只乒乓球质量,并不是所有的准基都是0。
(四)、让学生动手动的'将所有学过的数分类,并与同伴在流合作
七、课后作业
由学生与同伴合作,寻找生活中负数的实例及意义相反的量。
自我评价
本节课的教学过程,充分体现了在新课程理念指导下的课堂教学,教师把学习的主动权交给学生,改变了传统的教学方式、学习方式,注重学生合作学习,自主探究。
教师创设了学生熟悉的活动情景,把例题设计成了需要探究的问题,引发学生自觉参与学习活动的积极性,使知识发现过程融于有趣的活动中。
初中数学《正数和负数》教案 3
教学目标:
知识与技能:通过实例,感受引入负数的必要性;会判断一个数是正数还是负数;会用正负数表示互为相反意义的量。
过程与方法:通过正负数的学习,培养学生应用数学知识的意识,训练学生运用新知识解决实际问题的能力。
情感态度与价值观:通过归纳,让学生体会思维的一般过程是从具体到抽象;从特殊到一般的过程,使他们培养良好的思维习惯和探索精神,通过对学生进行爱国主义思想教育,培养学生良好的个性品质。
教学重点:
会判断正数、负数,运用正负数表示相反意义的量,理解0表示量的意义。
教学难点:
理解负数、数0表示的量的意义。
教村分析:
会判断正数、负数及理解对数0表示量的意义,能为下一节课讲述有理数的分类,大小的比较等打下基础,因此成为本节课的重点,由于用负数表示实际问题对学生来说很不习惯,因此成为本节课的教学难点。本节课是在小学所学算术数之后数的范围的第一次扩充,是算术数到有理数的衔接,而且是以后学习数轴、相反数、绝对值以及有理数运算的基础。本节课从学生熟悉的实例出发,通过一系列探索和讨论过程,着重培养学生学会观察、分析、总结和归纳,使传授知识与培养能力融为一体,使学生不仅学到科学探究的方法,而且让他们在学习过程中获得愉快和进步,同时培养他们爱国主义精神。
教学方法:
情境教学法、启发式教学法、讨论法
课时安排:
一课时
教具:
投影仪(电脑)
教学过程
一、初步了解,认识具有相反意义的量
启发学生举出生活中常遇到的一些具有相反意义的量,教师针对学生列举的例子给予适当点评,鼓励。
判断一些量是否具有相反意义:(出示幻灯片一)
例1、判断下面各对量是不是具有相反意义的量
(1)温度是零上25℃和零下18℃;
(2)某条河的水位上升0.7米和下降1.2米。
(3)珠穆朗玛峰高于海平面8844.43米和吐鲁番盆地最低点低于海平面155米。
教师针对学生的答题情况给予评价。
二、具有相反意义的量的表示方法:
教师综上进行引导:
一般地,对于具有相反意义的量,我们可以把其中一种意义的量规定为正,并在表示这量的前面放上一个“+”(读作“正”)来表示;把与它意义相反的量规定为负的,并在表示这个量的前面放上一个“-”(读作“负”)来表示(零除外)
鼓励学生任意结组,举例说明,巩固练习。
做一做:(出示幻灯片二)
1、请你仿照天气预报中对气温的表示方法,完成下表:略
2、请你把下面句子中的量用“+”或“-”的数表示出来
(1)一辆公共汽车在一个停车站下去10个乘客
(2)珠穆朗玛峰高于海平面8844.43米和吐鲁番盆地最低点低于海平面155米
(3)商品价格上涨10%和下降15%.
教师对学生的回答,给予鼓励性评价,最后板书答案。
三、观察归纳、理解正数和负数
议一议:(出示幻灯片三)
观察由前面的问题得到的数:
-3,4745,50,18,+8844.43,-155,+10%,-15%哪些数的形式与以前学过的数有区别?
教师根据学生的回答,归纳总结,同时板书课题及正、负数的概念。
在已学过的数(0除外)的前面添上“-”得到的这样的数叫做负数;在已学过的数(0除外)的前面添上一个“+”得到的,这样的数叫做正数。
教师强调两点:
1、0既不是正数,也不是负数。
2、正数中的“+”可以省略不写。
四、巩固训练(出示幻灯片四)
1、下面哪对量是具有相反意义的?
(1)在知识竞赛中,加20分和扣10分。
(2)一座水库水量增加10000立方米和减少12000立方米。
(3)某汽车站开进汽车28辆和开出汽车24辆。
(4)长方形的周长是24厘米和面积是27平方厘米。
2、写出与下列各量具有相反意义的量:
(1)飞机上升200米,____________________
(2)铅球的质量低于标准质量2克,_________
(3)木材公司购进木材2000立方米,________
3、判断下列各数哪些是正数,哪些是负数
+12,-3,19,+0.4,0,3.14,+,-,-0.01
五、应用迁移,拓展升华
(出示幻灯片五)
填空:-1,2,-3,4,-5,_____,_____,
_____,_____……
第81个数是_______,第2006个数是_______.
教师针对学生的。回答进行点评,并适当鼓励。
下表是小张同学一周中简记储蓄罐中钱的进出情况表(存入记为“+”)
星期日一二三四五六
元+16+5.0-1.2-2.1-0.9+10-2.6
(1)本周小张一共用掉了多少钱?存进了多少钱?
(2)储蓄罐中的钱与原来的相比多了还是少了?
(3)如果不用正负数的方法记账,你还可以怎样记帐?比较各种记帐方法的优劣。
教师参与学生的讨论,对学生的回答给予鼓励性的评价。
六、学习总结:
这节课你有哪些收获?有什么体会?
教师简要点评,同时对学生的总结给予适当的评价和鼓励,最后告诉学生,负数最早记载于中国的《九章算术》中,比国外早一千多年,借此向学生进行爱国主义思想教育。
1、课堂检测(包括基础题和能力提高题)
2、开放探究:
同学聚会,约定在中午12点开会,早到的记为正,迟到的记为负,结果最早到的同学记为+3点,最迟到的同学记为-1.5点,你知道他们分别是什么时候到的吗?最早到的同学比最迟到的同学早多少小时?一名学生按老师的指令表演,另一名学生在黑板上速记,其他同学参与,帮助本组的同学。
教师让多个学生自由发言
学生独立思考,举手发表个人见解,其他同学可以互相补充。
每组同学之间相互合作,交流,一同学说有关相反的两个量,由其他同学表示。
让学生抢答,尽量照顾不同层次的学生参与的积极性在教师的引导下学生仔细观察,小组讨论、交流,发表个人见解,学生踊跃发言,相互补充、完善,尝试归纳。
学生独立思考,举手回答,教师尽量选多名学生回答。
学生分组讨论,相互交流意见,选派代表回答。
同桌或小组学生讨论,合作探究,对于第(3)问同学们可以各抒已见。
学生相互交流自己的收获和体会,教师参与互动并给予鼓励性评价。
综合考查学以致用
通过活动,激发学生参与课堂教学的热情,使学生进入问题情境,让其感受到引入数学符号的必要性,引入新课。
培养学生敢于发表自己见解的精神,激发学生学习的兴趣。
进一步加深巩固具有相反意义的量的意义,同时培养学生的语言表达能力
巩固具有相反意义的量的表示方法,培养学生合作交流意识。
在练习中进一步巩固具有相反意义的量的表示方法。
在这一活动中有助于培养学生的观察能力,合作探究意识和语言表达能力,可调动不同层次学生的积极性。
巩固所学的知识,让多名学生回答,可调动不同层次的学生的积极性。
通过学生的讨论交流,培养学生合作意识及总结归纳能力。
通过这一实际问题,有助于提高学生运用所学的知识解决实际问题的能力,同时体现了运用正、负数表示的优越性。
学生尝试小结,自由发表学习心得,能培养学生的语言表达能力和归纳概括能力,同时向学生进行爱国主义思想教育。
考查学生对知识的掌握情况,锻炼学生综合运用知识,独立解决问题的能力。
《正数与负数》教案 4
教学目标
1.使学生理解的概念,并会判断一个给定的数是正数还是负数;
2. 会初步应用正负数表示具有相反意义的量;
3.使学生初步了解有理数的意义,并能将给出的有理数进行分类;
4.培养学生逐步树立分类讨论的思想;
5. 通过本节课的教学,渗透对立统一的辩证思想。
教学建议
一、重点、难点分析
本课的重点是了解是由实际需要产生的以及有理数包括哪些数。难点是学习负数的必要性及有理数的分类。关键是要能准确地举出具有相反意义的量的典型例子以及要明确有理数分类的标准。
正、负数的引入,有各种不同的方法。教材是由学生熟知的两个实例:温度与海拔高度引入的。比0℃高5摄氏度记作5℃,比0 ℃低5摄氏度,记作-5℃;比海平面高8848米,记作8848米,比海平面低155米记作-155米。由这两个实例很自然地,把大于0的数叫做正数,把加“-”号的数叫做负数;0既不是正数也不是负数,是一个中性数,表示度量的“基准”。这样引入正、负数,不仅有利于学生正确使用正、负数表示具有相反意义的量,而且还将帮助学生理解有理数的大小性质。把负数理解为小于0的数。教材中,没有出现“具有相反意义的量”的概念。这是有意回避或淡化这个概念。目的是,从正、负数引入一开始就能较深刻的揭示正、负数和零的性质,帮助学生正确理解正、负数的概念。
关于有理数的分类要明确的是:分类标准不同,分类结果也不同,分类结果应是不重不漏,即每一个数必须属于某一类,又不能同时属于不同的两类。
二、知识结构
1.正数、负数和零的概念
正数
负数
零
象1、2.5、 、48等大于零的数叫正数
象-1、-2.5, ,-48等小于零的数叫负数
0叫做零,0既不是正数也不是负数
2.有理数的分类
三、教法建议
这节课是在小学里学过的数的基础上,从表示具有相反意义的量引进负数的。从内容上讲,负数比非负数要抽象、难理解。因此在教学方法和教学语言的选择上,尽可能注意中小学的衔接,既不违反科学性,又符合可接受性原则。例如,在讲解有理数的概念时,让学生清楚地认识有理数与算术数的根本区别,有理数是由两部分组成:符号部分和数字部分(即算术数).这样,在理解算术数和负数的基础上,对有理数的概念的理解就简便多了。
为了使学生掌握必要的数学思想和方法,在明确有理数的分类时,可以有意识地渗透分类讨论的思想方法,理解分类的标准、分类的结果,以及它们的相互联系。通过正数、负数都统一于有理数,可以将对立统一的辩证思想的逐步树立渗透到日常教学中。
四、概念的理解
1﹒对于正数和负数的概念,不能简单的理解为:带“+”号的数是正数,带“-”号的数是负数。例如:一定是负数吗?答案是不一定。因为字母 可以表示任意的数,若 表示正数时, 是负数;当 表示0时, 就在0的前面加一个负号,仍是0,0不分正负;当表示负数时, 就不是负数了,它是一个正数,这些下节将进一步研究。
2﹒引入负数后,数的范围扩大为有理数,奇数和偶数的外延也由自然数扩大为整数,整数也可以分为奇数和偶数两类,能被2整除的数是偶数,如…-6,-4,-2,0,2,4,6…,不能被2整除的数是奇数,如…-5,-4,-2,1,3,5…
3﹒到现在为止,我们学过的数细分有五类:正整数、正分数、0、负整数、负分数,但研究问题时,通常把有理数分为三类:正数、0、负数,进行讨论。
4﹒通常把正数和0统称为非负数,负数和0统称为非正数,正整数和0称为非负整数;负整数和0统称为非正整数。
五、有理数的分类
整数和分数统称为有理数。
1)正整数、零、负整数统称为整数;正分数、负分数统称为分数。这样有理数按整数、分数的关系分类为:
2)整数也可以看作分母为1的分数,但为了研究方便,本章中分数是指不包括整数的分数。因此,有理数按正数、负数、0的关系还可分类为:
3)注意概念中所用“统称”二字,它与说“整数和分数是有理数”的意思不大一样。前者回避了分数是否包括整数的问题,即使把整数包括在分数范围内,说“统称”还是不错,而用后一种说法就欠妥了。
4)分数和小数的区别:
分数(既约分数)都可表示成小数,但不是所有的小数都能表示成分数的。如圆周率就不能表示成分数。
5)到目前为止,所学过的数(除外)都是有理数。
教学设计示例
(一)
一、素质教育目标
(一)知识教学点
1.了解:是实际需要的。
2.掌握:会判断一个数是正数还是负数。
3.应用:会初步应用正负数表示温度、海拔高度等互为相反数意义的量。
(二)能力训练点
通过正数、负数的学习,培养学生应用数学知识的意识,训练学生善于运用新知识解决实际问题的能力。
(三)德育渗透点
1.从实际问题引入正数、负数,然后通过实例巩固,让学生感知到数学知识来源于生活并为生活服务。
2.通过正负数的学习,渗透对立、统一的辩证思想。
(四)美育渗透点
通过引人负数,学生会感觉得小学里学的数是“不全”的,从而通过本节课的教学,给学生以完整美的享受。
二、学法引导
1.教学方法:采用直观演示法,教师注意创设问题情境并及时点拨,让学生从实例之中自得知识。
2.学生学法:研究实际问题→认识负数→负数在实际中的应用
三、重点、难点、疑点及解决办法
1.重点:会判断正数、负数,运用正负数表示具有相反意义的量。
2.难点:负数的引入。
3.疑点:负数概念的建立。
四、课时安排
2课时
五、教具学具准备
投影仪(电脑)、自制活动胶片、中国地图。
六、师生互动活动设计
教师通过投影给出实际问题,学生研究讨论,认识负数,教师再给出投影,学生练习反馈。
七、教学步骤
(一)创设情境,复习导入
师:提出问题:举例说明小学数学中我们学过哪些数?看谁举得全?
学生活动:思考讨论,学生们互相补充,可以回答出:整数,自然数,分数,小数,奇数,偶数……
师小结:为了实际生活需要,在数物体个数时,1、2、3……出现了自然数,没有物体时用自然数0表示,当测量或计算有时不能得出整数,我们用分数或小数表示。
【教法说明】学生对小学学过的各种数是非常熟悉的,教师提出问题后学生会非常积极地回忆、回答,这时教师注意理清学生的思路,点出小学学过的数的精华部分。
提出问题:小学数学中我们学过的最小的数是谁?有没有比零还小的数呢?
学生活动:学生们思考,头脑中产生疑问。
【教法说明】教师利用问题“有没有比0小的数?”制造悬念,并且这时学生有一种急需知道结果的要求。
(二)探索新知,讲授新课
师:为了研究这个问题,我们看两个实例
(出示投影1)用复合胶片翻四次
在冬日一天中,一个测量员测了中午12点,晚6点,夜间12点,早6点的气温如下:你能读出它们所表示的温度各是多少吗?(单位℃)
学生活动:看图回答10℃,5℃,零下5℃,零下10℃.
[板书]
10 5 -5 -10
师:再看一个例子,中国地形图上,可以看到我国有一座世界峰—珠穆朗玛峰,图上标着8848,在西北部有一吐鲁番盆地,地图上标着-155米,这两个数表示的高度是相对海平面说的,你能说说8848米,-155米各表示什么吗?
(出示投影2)(显示中国地形图,再显示珠穆朗玛峰和吐鲁番盆地的直观图形).
学生活动:学生思考讨论,尝试回答:8848米表示珠穆朗玛峰比海平面高8848米;-155米表示吐鲁番盆地比海平面低155米。
【教法说明】针对实例,教师不是自己一概地陈述而是注意学生参与意识,要学生观察、动脉、讨论后得出答案,充分发挥了学生的主体地位。
教师针对学生回答的情况给与指正。
师:以上实例中出现了-5、-10、-155这样的数,一般地温度比0℃高5℃、10℃、1.6℃、℃记作+5、+10、+1.6、+,大于0的数为正数;当温度比0℃低于5℃、10℃、2.2℃记作-5、-10、-2.2,像这样在正数前面加“-”号叫负数;0既不是正数也不是负数。
师随着叙述给出板书
[板书]
正数:大于0的数
负数:正数前面加“-”号(小于0的数)
0:既不是正数也不是负数。
【教法说明】在以上两个例子的基础上,对正数尤其是负数的引入已到了水到渠成的地步,这时教师描述性地指出正数、负数的概念,学生不仅认识了什么是,还清楚地知识,是相对的。
(三)尝试反馈,巩固练习
1.师板书后提问:第二个例子中的8848是什么数,-155是什么数,海平面的高度是哪个数?
2.出示1(投影显示)
例1 所有的正数组成正数集合,所有负数组成负数集合,把下列各数中的正数和负数分别填在表示正数集合和负数集合的圈里“
-11,4.8,+7.3,0,-2.7,-,,,-8.12,
3.自己任意写出6个正数与6个负数分别把它填在相应的大括号里。
正数集合 负数集合
4.(1)某地一月份某日的平均气温大约是零下3℃,可用_________数表示,记作__________.
(2)地图册上洲西部地中海旁有一个死海湖,图上标有-392,这表明死海湖面与海平面相比怎样?
学生活动:1、2题学生回答,3题同桌交换审阅,4题讨论后举手回答。
【教法说明】l题是紧扣上面的例子把正负数应用到实例中去,既呼应了前面,又认识了正负数,2题是通过判断正数负数渗透集会的概念,3题是让学生自行编正数负数,以达到自我消化吸收,4题是用实际生活中的典型例子加强对负数的理解和认识,同时也为下一步引出相反意义的量打下基础。
师:在0℃以上的温度用正数表示,0℃以下的温度用负数表示;高于海平面的地方用正数表示它的高度,低于海平面的地方用负数表示它的高度。在实际生活中还有一些与温度、海拔高度类似的量也常常用正负数表示,你能列出一些吗?
学生活动:分组讨论,互相补充,两个学生回答。
教师对学生列举的例子给与适当分析,针对学生回答予以补充巩固练习:
(出示投影升)
1.填空
(1)-50表示支出50元,那么+100元表示_____________.
(2)正常水位为0 ,水位高于正常水位0.2 记作______________,低于正常水位0.3记作______________.
(3)乒乓球比标准重量重0.039记作_____________;比标准重量轻0.019记作_____________;标准重量记作______________.
2.一个学生演示,教师提出要求规定向前走为正。
(1)向前走2步记作_________________.
(2)向后走5步记作_________________.
(3)“记作6步”他应怎么走?“记作-4步”呢?
(4)原地不动记作_________________.
(出示投影5)
3.例题
一物体沿东西两个相反的方向运动时,可以用正负数表示它们的运动。
(1)如果向东运动4 记作4 ,向西运动5记作_______________.
(2)如果-7 表示物体向西运动7 ,那么6表明物体怎样运动?
学生活动:l题学生审题后回答。2题学生演示,其他学生观察举手回答。3题回答。
【教法说明】用正数、负数表示相反意义的量是本节的重点。首先,先让学生举出自己所熟悉的相反意义的量,并用正数负数表示,激发学生兴趣,这时再出示补充的练习中的1题,学生能非常轻松地回答出来,这时学生有一种非常轻松的感觉,噢!原来正数、负数是用来表示这样的量的。紧接着,让一个学生向前后任意走,规定向前为正,让其他学生观察,第一次他向哪个方向走了?走了几步?记作什么?第二次呢?第三次呢?这时学生积极观察举手回答,然后让一个学生提出类似要求“记作+5应怎样走?”,这样在活跃、欢快的气氛中加深了对正数负数的理解。最后利用例2作为巩固练习就非常容易了,这一环节就是要学生在一种轻松愉快的气氛中获取知识,符合素质教育的要求。
师:通过今天这节课的学习,你能回答老师开始时提出的问题吗?—有没有比零小的数?(有,是负数)
1.正数和负数表示的是一对相反意义的量。
2.零既不是正数也不是负数。
八、随堂练习
1.判断题
(l)0是自然数,也是偶数( )
(2)0可以看成是正数,也可以看成是负数( )
(3)海拔-155米表示比海平面低155米( )
(4)如果盈利1000元,记作+1000元,那么亏损200元就可记作-200元( )
(5)如果向南走记为正,那么-10米表示向北走-10米( )
(6)温度0℃就是没有温度( )
2.将下列各数填入相应的大括号里
-9,,0, ,20xx,+61,,-10.8
正数集合
负数集合
3.用正数和负数表示下列各量
(1)零上24摄氏度表示为___________,零下3.5摄氏度表示为______________。
(2)足球比赛,赢2球可记作_________球,输一球应记作____________球。
九、布置作业
(一)必做题
1.下列各数中哪些是正数?哪些是负数?
-16,0.04,+ , , ,0,25.8,-3.6,-4,9651,-0.1
2.一物体可左右移动,设向右为正,
(1)向左移动12 应记作什么?
(2)“记作8 ”表明什么?
(二)选做题
1.一潜水艇所在高度为-50 ,一条鲨鱼在艇上方10 处,鲨鱼所在的高度是多少?
2.甲地海拔高度是30 ,乙地海拔高度是20 ,丙地海拔高度是-10 ,哪个地方,哪个地方最低?的地方比最低的地方高多少?
十、板书设计
随堂练习答案
1.√ × √ √ × ×
2.正数集合 负数集合
3.(1)+24℃,-3.5℃;(2)+2,-1
作业 答案
(一)必作题
1.0.04, , ,25.8,9651是正数;
-16,,-3.6,-4,-0.1是负数;
2.(1)向左移动12 记作 ;
(2)记作 表明物体向右移动 .
(二)选作题
1. .
2.甲地,丙地最低,的地方比最低的地方高 .
(二)
一、素质教育目标
(一)知识才学点
1.理解有理数的意义。
2.能把给出的有理数按要求分类。
3.了解数0在有理数分类中的作用。
(二)能力训练点
培养学生树立对数分类讨论的观点和能正确地进行分类的能力。
(三)德育渗透点
通过联系与发展、对立与统一的思考方法对学生进行辩证唯物主义教育。
(四)美育渗透点
通过有理数的分类,给学对称美的享受
二、学法引导
1.教学方法:启发引导,充分体现学生为主体,注重学生参与意识。
2.学生学法:识记→练习巩固。
三、重点、难点、疑点及解决办法
1.重点:有理数包括哪些数。
2.难点:有理数的分类。
3.疑点:明确有理数分类标准。
四、教具学具准备
投影仪、自制胶片。
五、师生互动活动设计
教师用投影出示练习题,学生讨论解决,教师引导学生对有理数进行分类,学生以多种形式完成训练题。
六、教学步骤
(一)复习导入
(出示投影1)
1.把下列各数填入相应的大括号内:
+6, ,3.8,0,-4,-6.2, ,-3.8,
正数集合
负数集合
2.填空:
(1)若下降5 记作-5 ,那么上升8 记作__________________,不升不降记作_____________________.
(2)如果规定+20表示收入20元,那么-10元表示______________.
(3)如果由地向南走3千米用3千米表示,那么-5千米表示____________________,在 地不动记作__________________.
【教法说明】出示投影后,学生思考,然后举手回答问题。当学生回答完一题后。教师追问:你能不能说说什么叫正数,负数呢?0是正数吗?是负数吗?通过第1小题,使学生进一步理解正、负数的概念,以及零的特殊意义。通过第2小题使学生掌握对于两种相反意义的量,如果其中一种量用正数表示,那么另一种量便可以用负数表示。
师:在小学大家学过1,2,3,4……这是什么数呢?
生:自然数。
师:在这些自然数前面加上负号,如-1,-2,-3,-4……这些是什么数呢?
生:负数。
师:具体叫什么负数呢?
师:今天我们要把大家学过的数分类命名,然后给一个统一的名称。
【教法说明】通过教师由浅入深层层设问,使学生在头脑当中逐步认识问题。这样一步一个台阶的教学过程,符合学生认识问题的一般规律。
(二)探索新知,讲授新课
1.分类数的名称
1,2,3,4……叫做正整数;
-1,-2,-3,-4……叫做负整数。
0叫做零。
, , (即)……叫做正分数;
, , (即)……叫做负分数;
正整数、负整数和零统称为整数。
正分数和负分数统称为分数。
整数和分数统称有理数。即
【教法说明】以上内容由师生共同参与完成,教师启发诱导,遵循了由具体到抽象的认识规律。
提出问题:巩固概念
(出示投影2)
(1)0是整数吗?是正数吗?是有理数吗?
(2)-5是整数吗?是负数吗?是有理数吗?
(3)自然数是整数吗?是正数吗?是有理数吗?
【教法说明】这三道小题主要是检查学生对概念的理解。新授过程中随时设计习题进行反馈练习,以便调节回授。
注意:有时为了研究的需要,整数也可以看作是分母为1的分数,这时分数包括整数,本章中的分数是指不包括整数的分数。
2.有理数的分类
为了便于研究某些问题,常常需要将有理数进行分类,需要不同,分类方法也常常不同,常用的有以下两种:
(1)先把有理数按“整”和“分”来分类,再把每类按“正”与“负”来分类,如下表:
(2)先把有理数按“正”和“负”来分类,再把每类按“整”和“分”来分类,如下表
尝试反馈,巩固练习
(出示投影3)
下列有理数中:-7,10.1, ,89,0,-0.67, .
哪些是整数?哪些是分数?哪些是正数?哪些是负数?
学生思考,然后找同学逐一回答。其他同学准备补充或纠正。
【教法说明】通过此题,检查学生对有理数分类的掌握情况,通过对有理数进行分类,培养学生树立对数分类讨论的观点和正确地进行分类的能力。
3.数的集合
我们曾经把所有正数组成的集合,叫做正数集合,所有的负数组成的集合叫做负数集合。同样把所有整数组成的集合叫做整数集合;把所有分数组成的集合叫做分数集合;把所有有理数组成的集合叫做有理数集合。
(三)变式训练,培养能力
(出示投影4)
(1)把有理数6.4,-9, ,+10,,-0.021,-1, ,-8.5,25,0,100按正整数、负整数、正分数、负分数分成四个集合。
正整数集合 ,负整数集合
正分数集合 ,负分数集合
(2)把下列有理数:-3,+8, ,+0.1,0, ,-10,5,-0.7填入相应的集合:
整数集合 ,分数集合
正数集合 ,负数集合
【教法说明】学生思考后,动笔完成上述第(1)题。一个学生在黑板上板演,其他学生做在练习本上,然后师生共同订正。从中进一步培养学生分类能力。第(2)题采用分组计分形式,充分调动学生学习数学的积极性,增强学生集体荣誉感。
(四)归纳小结
师:今天我们一起学习了哪些内容?
由学生自己小结,然后教师再总结:
今天我们一起学习了有理数的定义和两种分类方法。要能正确地判断一个数属于哪一类,要特别注意“0”不是正数,但是整数。
【教法说明】课堂小结,采取学生小结的办法,让学生积极参与教学活动,归纳出本节课所学的知识。再由教师归纳总结,帮助全体学生进一步明确本节课的重点和应达到的目标。
(五)反馈检测
(出示投影5)
(1)整数和分数统称为_______________;整数包括___________________、_________________和零,分数包括________________和__________________.
(2)把下列各数填入相应集合的持号内:
-3,4,-0.5,0,8.6,-7
整数集合 ,分数集合
正有理数集合 ,负分数集合
(4)选择题:-100不是( )
A.有理数; B.自然数; C.整数; D.负有理数。
以小组为单位计分,积分的组为优胜组。
【教法说明】通过反馈检测,既使学习的积极性和主动性,增强学生积极参与教学活动的意识和集体荣誉感。
七、随堂练习
1.判断题
(1)整数又叫自然数。
(2)正数和负数统称为有理数
(3)向东走-20米,就是向西走20米( )
(4)温度下降-2℃,是零上2℃( )
(5)非负数就是正数,非正数就是负数
2.在下列适当的空格里打上“√”号
有理数
整 数
分 数
正整数
负分数
自然数
2
-3.14
0
3.把下列各数分别填在相应的大括号里
1.8,-42,+0.01, ,0,-3.1415926,,1
整数集合
分数集合
正数集合
负数集合
自然数集合
非负数集合
八、布置作业
(一)必做题:课本第50页3、4.
(二)思考题:把下列各数填在相应的集合中
3.14,-5,0,,89,-2.67, , ,+1001
有理数集合
非负有理数集合
负有理数集合
九、板书设计
随堂练习答案
1.× × √ × ×
2.略
3.整数集体 ;分数集合 ;正数集合 ;负数集合 ;自然数集合 ;非负数集合 .
作业 答案
(一)必做题:课本第50页
3.正数 负数:
4.正整数集合 负整数集合 正分数集合 负分数集合
(二)思考题
有理数集合
非负有理数集合
负有理数集合
《正负数》教案 5
教学目标:
1、在熟悉的生活情境中,进一步体会负数的意义。
2、会用正负数的有关知识解决简单的实际问题,知道正负可以互相抵消,会解决正负相差的问题。
3、进一步培养学生的观察,分析,提出问题和解决问题的能力。
教学重点:
进一步体会正负数表示的是具有相反意义的量,能运用抵消的思想处理数学问题。
教学准备:
课件,练习纸
教学过程:
一、游戏感知正负数可以互相抵消。
1、师生游戏
师:同学们,剪刀石头布的游戏玩过吗?(玩过)好,我们就来玩玩,谁愿意和我玩?
(师生游戏,其它学生当裁判,并要求做好记录)
师:谁来说说你的记录结果,你认为谁赢了?
师:比赛的时候还要给比赛双方记录成绩,你认为怎样记录成绩好呢?
(揭示课题)
出示评分规则:胜一局记1分,平一局记0分,负一局记-1分。
【联系学生实际,创设情境,体验负数在生活中产生的必要性,调动学生学习的自主性和能动性。】
(师生共同记录比赛成绩)
师:现在我俩的得分分别是多少?
师:你是怎样想?
生:+1和-1可以互相抵消?
师:抵消是什么意思?抵消的结果是多少?
2、生生游戏
师:你们想自己玩一次吗?两人一组,3局定胜负,必须有一人记录成绩。
(学生活动)
(反馈比赛结果)
3、深入了解抵消的应用
师:如果老师想反败为胜,你认为老师至少还要胜几场?
师:这时两人得分分别是多少?你是怎样想的。
师:除了像+1和-1,+2和-2这样的数相抵消结果为0,你还能举出这样的例子吗?
师:+5和-3,-5和+3还能互相抵消吗?
小结:意义想反的两个数,我们可以用正负数来表示,把正数和负数合并起来,我们可以采用抵消的方法进行计算。
【让学生在游戏中体验正负数的意义,理解抵消在正负数计算中的应用,从而使机械的数学计算变得有趣。教师在数学学习中只是起着组织者、引导者、合作者的作用。】
二、从时间轴上求正负数的相差数。
(课件出示:天宫神八交会对接)
师:从这张图片你看明白了什么?
师:你知道太空人两餐相差多长时间吗?
师:你还能提出新的问题吗?
【密切联系学生的生活实际,创设有趣、现实的情境,并以别开生面的“神八、天宫一号太空一吻”的场面,让学生感受生活中的负数所表示的意义,并通过学生自主讨论、合作交流、不断探索以获得数学知识,充分发挥了学生的主体地位,使学生感悟到数学应用于生活,达到学以致用的目的。】
三、综合运用知识,解决正负数问题
师:生活中除了赢分和输分这样的量可以用正负来表示,你还能举出这样的例子吗?
师:正负数在生活中的应用很广泛,只要你用心感受,那么它就在你的身边。
(课件出示:一个11岁儿童的标准身高150厘米我们把它记作0,想一想你的身高是多少,应记作什么?)
(学生思考后,全班反馈)
出示表格。
(1)完成表格。
(2)求这一组同学的平均身高。
方法一:(150+145+157+155+148)÷5=151(厘米)
方法二:(0-5+7+5-2)÷5+150=151(厘米)
(3)比较两种方法
(4)仔细比较上面的数据,你有什么新发现?
(5)认识数轴。
【知识的巩固在情境中不知不觉地进行并具有层次性,由自己的身高引入小组成员的身高,由实际向高引向正负数的记录,由正负数的记录又回到实际身高。在求身高的平均数时,通过两种计算方法的比较体现了正负数抵消的优越性,从而使学生“人人学到有价值的数学”。在两组数据的比较中,学生主动去思考、去探索,感受到正负数的大小及相差数。可以说习题设计上具有趣味性和可探究性的特点。数轴的引入,重视对学生数感的培养,并形成认知结构。】
四、课堂小结
师:通过这节课的学习,你有什么收获?
七年级数学正数和负数教案 6
【教学目标】
知识与技能:
使学生了解正数与负数是从实际需要中产生的。
过程与方法:
在经历从具体例子引入负数的过程中,使学生理解正数与负数的概念,并会判断一个数是正数还是负数,初步会用正负数表示具有相反意义的量,理解0所表示的意义。
情感与态度:
在负数概念形成的过程中,培养学生的观察、归纳和概括能力,激发学生学好数学的热情。
【学情分析 】
1.了解负数产生的背景(数的产生和发展离不开生活和生产的需要),体会负数在生产和生活中运用的重要性。 2.学生经历负数引入的过程:生产和生活中的例子(具有互为相反意义的量)——数不够用——负数的引入——数学符号的表示——问题的解决等过程,初步培养学生数学符号感,了解数学符号在数学学习中的地位和作用。培养学生在与人合作交流的过程中,主动探究问题本质,善于观察、归纳、概括以及发现解决问题的方法的能力。
【重点难点】
正确认识正数和负数,理解0所表示的量的意义。
【教学过程】
教学活动
活动1【导入】导入
复习回顾,做好衔接 同学们已经有了六年学习数学的经验,数对每一位同学来说并不陌生,相信同学们已经认识到数的产生和发展离不开生产和生活的需要。首先让我们来回顾: 自然数的产生、分数的产生。 演示课件,展示图片,直观说明数的产生和扩充:(出示图片说明自然数的产生、分数的产生。让学生理解数的符号的产生的好处) 师生活动(引导学生观察图片,试着解释图片意义):我们知道,为了表示物体的个数(如原始社会打猎计数)或事物的顺序,产生了1,2,3,...;为了表示“没有”(比如猎物分完),引入了数0;有时分配、测量(丈量土地)的结果不是整数,需要用分数(小数)表示。 总之,数是为了满足生产和生活的需要而产生发展起来的。
设计意图:数的产生和发展离不开生活和生产的需要。
活动2【导入】活动2
演示课件,展示问题及相应的图片。
问题(1)北京冬季里某天的温度为-3~3 ,它的确切含义是什么?这一天北京的温差是多少?
问题(2)有三个队参加的足球比赛中,红队胜黄队(4:1),黄队胜蓝队(1:0),蓝队胜红队(1:0)三个队的净胜球数分别是2,-2,0,如何确定排名顺序?
问题(3)2006年我国花生产量比上年增长1.8%,油菜籽产量比上年增长-2.7%,这里增长-2.7%代表什么意思?
师生活动:教师演示课件并对问题背景做些说明:
例如在净胜球的问题中,先介绍确定足球比赛排名顺序的规定:
两队积分不相同,积分高的队排名在前;
两队积分相同,净胜球多的队排名在前;
两队积分、净胜球都相同,进球多的队排名在前。
其次介绍积分计算规则:胜一场得3分,平一场得1分,输一场得0分。由此易知这三个队的积分均为3+0=3。
最后介绍净胜球的计算规则:红队胜黄队(4:1)表示红队进4球,失1球或者黄队进1球,失4球,净胜球就是比赛中多进了几个球。这里进球和失球是互为相反意义的量。我们规定:进球用“+”,失球用“-”表示,这样进球数和失球数可分别在进球数和失球数前面添上“+”或“-”来表示。净胜球就是在比赛中进球与失球之和。比如以红队为例,进球为4,失球为2(两场比赛各失一球)记为-2,所以红队净胜球为4+(-2)=2.类似地可算出黄队净胜球-2(进球比失球少2个球,相当于净失球2个,所以记为-2),蓝队净胜球是0.
在教师的指导下,学生思考-3 ~3 、净胜球与排名的顺序、增长-2.7%的意义以及在解决这些问题时必须要对这些新数进行四则运算等问题。
设计意图:通过温度的例子——出现新数-3还涉及到有理数的减法;净胜球的例子,也出现了负数,确定净胜球涉及有理数的加法,确定排名顺序涉及有理数的大小的比较;在产量增长率的例子中,运用正负数描述朝指定方向变化的情况等问题,引出用各种符号表示数,让学生试着解释,激发他们的求知欲,同时对问题进行说明,找出它们的共性,揭示问题的实质(具有相反意义的量)。
具有相反意义的量的表示
师生活动:鉴于上面的分析讨论,在教师的引导下,让学生试着归纳具有相反意义的量的表示:
比如温度的问题,零上与零下(是以零为分界点)是具有相反意义的量,我们规定零上为正,则零下为负;净胜球的例子,进球与失球(对方进球)也是具有相反意义的量,我们规定进球为正,则失球为负…… 一般地,对于具有相反意义的量,我们可以把其中一种意义的量规定为正,并在其前面写上一个“+”(读作“正”)来表示;把与它意义相反的量规定为负的,并在其前面写上一个“-”(读作“负”)来表示(零除外)
设计意图:由实例归纳具有相反意义的量的表示方法,培养学生合作交流意识及从特殊到一般认识问题本质的能力。
初中数学《正数和负数》教案 7
教学目标
一、知识与技能
进一步巩固正数、负数的概念;理解在同一个问题中,用正数与负数表示的量具有相同的意义。
二、过程与方法
经历举一反三用正、负数表示身边具有相反意义的量,进而发现它们的共同特征。
三、情感态度与价值观
鼓励学生积极思考,激发学生学习的兴趣。
教学重、难点与关键
1.重点:正确理解正、负数的概念,能应用正数、负数表示生活中具有相反意义的量。
2.难点:正数、负数概念的综合运用。
3.关键:通过对实例的进一步分析,使学生认识到正负数可以用来表示现实生活中具有相反意义的量。
教具准备
投影仪。
教学过程
复习提问,课堂引入
1.什么叫正数?什么叫负数?举例说明,有没有既不是正数也不是负数的数?
2.如果用正数表示盈利5万元,那么-8千元表示什么?
新授
例1.一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值。
2.2001年下列国家的商品进出口总额比上年的变化情况是:
美国减少6.4%,德国增长1.3%,法国减少2.4%,英国减少3.5%,意大利增长0.2%,中国增长7.5%。
写出这些国家2001年商品进出口总额的增长率。
分析:在一个数前面添上负号,它表示的是与原数具有意义相反的数。负与正是相对的,增长-1,就是减少1;增长-6.4%就是减少6.4%,那么什么情况下增长率是0?当与上年持平,既不增又不减时增长率是0。
解:1.这个月小明体重增长2kg,小华体重增长-1kg,小强体重增长0kg.
2.六个国家2001年商品进出口总额的增长率分别为:
美国-6.4%,德国1.3%,法国-2.4%,英国-3.5%,意大利0.2%,中国7.5%。
归纳:在同一个问题中,分别用正数与负数表示的量具有相反的。意义,如盈利-2千元,就是亏本2千元;前进-3米,就是后退3米;浪费-14元,就是节约14元;向南走-7米,就是向北走7米,因此盈利2千元与盈利-2千元具有相反的意义。
巩固练习
1.课本第5页的第8题。
点拨:增长-3.4%,就是减少3.4%,所以这一年里这六国中中国、意大利的服务出口额增长了,美国、德国、英国、日本的服务出口额都减少了,意大利增长最多,日本减少最多。
2.补充练习。
若向西走10米,记作-10米,如果一个人从A地先走12米,再走-15米,你能判断此人这时在何处吗?
解:向西走10米,记作-10米,那么这人走12米,则表示向东走12米,再走-15米,表示向西走了15米,即这个人从A地先向东走12米,接着再向西走15米,此人这时应该在A地的西方3米处。
课堂小结
通过本节课的学习,你对正数、负数的概念是否有了进一步理解?请你用正负数表示身边具有相反数的量。
作业布置
课本第5页习题1.1第4、5、6、7题。
七年级数学正数和负数教案 8
1.1《正数和负数》教学设计方案
(第1课时)
教材分析:
一、教材所处的地位及作用:“1.1正数和负数”一节,是人教版七年级上册第一章第一节的内容,本节内容主要是学习正数、负数和零的定义、联系。是本章有理数学习的基础。
二、教学目标
知识与技能:借助生活中的实例理解有理数的意义,会判断一个数是正数还是负数,能应用正负数表示生活中具有相反意义的量。
过程与方法:1.体会负数引入的必要性,感受有理数应用的广泛性,并领悟数学知识来源于生活,体会数学知识与现实世界的联系。
2.能结合具体情境出现并提出数学问题,并解释结果的合理性。
情感态度与价值观:乐于接触社会环境中的数学信息,愿意谈论数学话题,在数学活动中发挥积极作用。
三、教学重、难点
重点:体会负数引入的必要性和有理数应用的广泛性, 能应用正负数表示生活中的具有相反的意义的量。
难点:能应用正负数表示生活中的具有相反的意义的量,养成把数学应用于生活实际问题的习惯。
教学方法:采用“现象──问题──目标”的教学方法,力求体现“主体参与、自主探索、合作交流、指导引探”的教学理念
教学过程
教师演示第一节首图片为主体的多媒体课件。
环节 教师活动 学生活动 设计意图
创设情境导入新课
自主学习
师生互动
合作探究
达标检测
学习总结
教师出示图片说明自然数的产生、分数的产生。接着
出示问题
问题1 天气预报:北京市冬季某天的温度为-3~3℃,它的确切含义是什么?这一天我市的温差是多少?
问题2 有三个队参加的足球比赛中,红队胜黄队(4:1),黄队胜蓝队(1:0),蓝队胜红队(1:0),如何确定三个队的净胜球数与排名顺序?
问题3 某机器零件的长度设计为100mm,加工图纸标注的尺寸为100 0.5(mm),这里的 0.5代表什么意思?合格产品的长度范围是多少 ?
三个问题中的-3、 0.5是我们以前没有学过的新数,这说明随着生活和劳动的发展我们以前学过的数,已经不够用了,需要引进新的数。来服务我们的生活。从而导入新课
一、出示本节课的学习目标
1、通过生活中实例认识到引入负数的必要性。
2、知道什么是负数,零,正数。
3、会判断一个数是正数?还是负数?
4、能用正数、负数表示实际生活中具有相反意义的量
二、出示本节课的自学提纲
1、.知识点1:正数、负数的概念---------阅读教材第2页,像3、2、0.5、这样比0大的数叫 ,根据需要,有时在正数前面加上“+”,如+5, , , ,…。正数前面的“+”,一般省略不写:而像-3、-2、-0.5这样在正数前面加上“—”号的数叫 。如-6, ,…。“-6”读作 。
2、知识点2:对“0”的理解--------阅读教材第2 页
0既不是 数,也不是 数,它是正数与负数的分水岭。它的意义很丰富,它既可以表示“没有”,也可以表示其它特定的意义。
3、知识点3;用正数和负数表示具有相反意义的量--------阅读教材第3页
相反意义的量必须具有两个要素:一是它们的意义 ;二是它们都具有数量,而且一定是 量。
一、指导学生在本组内交流结果,收集每组不会的问题,试着让其他组解决。
二、教师收集全班不会的问题,帮着解决。
做一做:(出示幻灯片)
一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值
七年级数学正数和负数教案 9
〔教学目标〕
一、知识与能力
借助生活中的实例会判断一个数是正数还是负数,能用正负数表示具有相反意义的量
二、过程与方法
1、过程:通过实例引入负数,从而指导学生会识别正负数及其表示法,能应用正负数表示具有相反意义的量。
2、方法:讨论法、探究法、讲授法、观察法。
三、情感、态度、价值观
乐于接触社会环境中的数学信息,愿意谈论数学话题,在数学活动中发挥积极作用
〔重点难点〕本课的重点是了解正数与负数是由实际需要产生的以及有理数包括哪些数。难点是学习负数的必要性及有理数的分类。关键是要能准确地举出具有相反意义的量的典型例子以及要明确有理数分类的标准。
正、负数的引入,有各种不同的方法。教材是由学生熟知的两个实例:温度与海拔高度引入的。比0℃高5摄氏度记作5℃,比0℃低5摄氏度,记作-5℃;比海平面高8848米,记作8848米,比海平面低155米记作-155米。由这两个实例很自然地,把大于0的数叫做正数,把加“-”号的数叫做负数;0既不是正数也不是负数,是一个中性数,表示度量的“基准”。这样引入正、负数,不仅有利于学生正确使用正、负数表示具有相反意义的量,而且还将帮助学生理解有理数的大小性质。把负数理解为小于0的数。教材中,没有出现“具有相反意义的量”的概念。这是有意回避或淡化这个概念。目的是,从正、负数引入一开始就能较深刻的揭示正、负数和零的性质,帮助学生正确理解正、负数的概念。
关于有理数的分类要明确的是:分类标准不同,分类结果也不同,分类结果应是不重不漏,即每一个数必须属于某一类,又不能同时属于不同的两类。
教学建议
这节课是在小学里学过的数的基础上,从表示具有相反意义的量引进负数的。从内容上讲,负数比非负数要抽象、难理解。因此在教学方法和教学语言的选择上,尽可能注意中小学的衔接,既不违反科学性,又符合可接受性原则。例如,在讲解有理数的概念时,让学生清楚地认识有理数与算术数的根本区别,有理数是由两部分组成:符号部分和数字部分(即算术数).这样,在理解算术数和负数的基础上,对有理数的概念的理解就简便多了。
为了使学生掌握必要的数学思想和方法,在明确有理数的分类时,可以有意识地渗透分类讨论的思想方法,理解分类的标准、分类的结果,以及它们的相互联系。通过正数、负数都统一于有理数,可以将对立统一的辩证思想的逐步树立渗透到日常教学中。
一、负数的引入
我们知道,数产生于人们实际生产和生活的需要。[投影1~3:图1.1-1]人们由记数、排序,产生了数1,2,3……;为了表示“没有”、“空位”引进了数0;测量和分配有时不能得到整数的结果,为此产生了分数和小数。
在生活、生产、科研中经常遇到数的表示与数的运算的问题。
[投影]1.北京冬季里某天的温度为-3~3℃,它的确切含义是什么?这一天北京的温差是多少?
初中数学正负数教案 10
〔教学目标〕
1、了解负数的产生是生活、生产的需要;
2、掌握正、负数的概念和表示方法,理解数0表示的量的意义;
3、理解具有相反意义的量的含义;
4、熟练地运用正、负数描述现实世界具有相反意义的量;
5、进一步体验正负数在生产生活实际中的广泛应用,提高解决实际问题的能力。
〔重点难点〕
正确理解正、负数的概念,数0表示的量的意义和具有相反意义的量是重点,正确理解负数、数0表示的量的意义是难点。用正、负数表示生活中具有相反意义的量是重点,正、负数概念的综合运用是难点。
〔教学过程〕
一、负数的引入
我们知道,数产生于人们实际生产和生活的需要。[投影1~3:图1.1-1]人们由记数、排序,产生了数1,2,3;为了表示“没有”、“空位”引进了数0;测量和分配有时不能得到整数的结果,为此产生了分数和小数。
在生活、生产、科研中经常遇到数的表示与数的运算的问题。
[投影]1.北京冬季里某天的温度为-3~3℃,它的确切含义是什么?这一天北京的温差是多少?
2.有三个队参加的足球比赛中,红队胜黄队(4︰1),黄队胜蓝队(1︰0),蓝队胜红队(1︰0),三个队的净胜球分别是2,-2,0,如何确定排名顺序?
3.20____年我国产量比上年增长1.8%,油菜籽产量比上年增长-2.7%,这里的增长-2.7%代表什么意思?
上面三个问题中,哪些数的形式与以前学习的数有区别?
数-3、-2、-2.7%与以前学习的数有区别。-3表示零下3摄氏度,-2是由2-4得到的,表示净输2个球,-2.7%表示减少2.7%,而3表示零上3摄氏度,2表示净赢2个球,2.7%表示增长2.7%。
像3、2、2.7%这样大于零的数叫做正数;像-3、-2、-2.7%这样在正数前面加上负号“-”的数叫做负数。根据需要,有时在正数前面也加上“+”(正)号,例如,+3、+2、+0.5、+1/3,?就是3、2、0.5、1/3,?。
这样,一个数由两部分组成,数前面的“+”“-”号叫做它的符号,后面的部分叫做这个数的绝对值。
请你指出数-3.2,5,-2/3的符号和绝对值。
二、对数“0”的重新认识
大于零的数叫做正数,在正数前面加上负号“-”的数叫做负数,那么0是什么数呢?数0既不是正数,也不是负数,它是正数和负数的分界。
我们知道,0表示没有,它仅仅表示没有吗?实际上它还可以表示一个确定的量。如今天气温是零度,是指一个确定的温度;海拔0表示海平面的平均高度。
0的意义已不仅仅是表示“没有”,它还可以表示一个确定的量。
三、用正负数表示相反意义的量
把0以外的数分为正数和负数,起源于表示两种相反意义的量。正数和负数在许多方面被广泛应用。在地形图上表示某地高度时,需要以海平面为基准,通常用正数表示高于海平面的某地的海拔高度,负数表示低于海平面的某地的高度。例如:珠穆朗玛峰的海拔高度为8844米,吐鲁番盆地的海拔高度为-155米。又如记录账目时,通常用正数表示收入款额,负数表示支出款额。
请大家看课本第3面的图1.1-2、1.1-3。
你能解释上面图中正数和负数的含义吗?
图1.1-2中的4600表示A地高于海平面4600米,-100表示B地低于海平面100米;图1.1-3中的2300表示存入2300元,-1800表示支出1800元。
你能再举一些用正负数表示数量的实际例子吗?
通常用正数表示汽车向东行驶的路程,用负数表示汽车向西行驶的路程;用正数表示水位升高的高度,用负数表示水位下降的高度;用正数表示买进东西的数量,用负数表示卖出东西的数量,等等。
四、巩固练习
《正负数》教案 11
1.1正负数(第二课时)教学任务分析教学目标: 1.通过对数“零”的意义的探讨,进一步理解正数和负数的概念;2.利用正负数正确表示相反意义的量(规定了指定方向变化的量)3.进一步体验正负数在生产生活实际中的广泛应用,提高解决实际问题的能力,激发学习数学的兴趣。
教学重点:深化对正负数概念的理解
教学难点:正确理解和表示向指定方向变化的量
教学流程安排活动流程图活动内容和目的 活动1 创设情景,引入新课活动2 揭示规律活动3知识应用活动4 布置作业及小结通过复习回顾正负数的知识导入新课。 利用温度中的零度来解释与理解数“0”的意义。正负数表示相反意义的量。通过生活实例理解正负数表示相反意义的量,及零的分界意义回顾梳理知识,,培养学生的归纳总结能力,通过课外作业,使学生进一步理解,内化知识。.教学过程设计问题与情境 师生行为 设计意图[活动1]复习回顾正负数的概念问题1:有没有一种既不是正数又不是负数的数呢?问题2:引入负数后,数按照“两种相反意义的量”来分,可以分成几类?师生一起回顾:上一节课我们知道了在实际生产和生活中存在着两种不同意义的量,为了区分这两种量,我们用正数表示其中一种意义的量,那么另一种意义的量就用负数来表示。这就是说:数的范围扩大了(数有正数和负数之分).那么,有没有一种既不是正数又不是负数的数呢?学生思考并讨论。(数0既不是正数又不是负数,是正数和负数的分界,是基准。这个道理学生并不容易理解,可视学生的讨论情况作些启发和引导,下面的例子供参考)例如:在温度的表示中,零上温度和零下温度是两种不同意义的量,通常规定零上温度用正数来表示,零下温度用负数来表示。那么某一天某地的最高温度是零上7℃,最低温度是零下5℃时,就应该表示为+7℃和-5℃,这里+7℃和-5℃就分别称为正数和负数。那么当温度是零度时,我们应该怎样表示呢?(表示为0℃),它是正数还是负数呢?由于零度既不是零上温度也不是零下温度,所以,0既不是正数也不是负数·把0以外的数分为正数和负数,起源于表示两种相反意义的量。“数0耽不是正数,也不是负数”也应看作是负数定义的一部分。在引入负数后,0除了表示一个也没有以外,还是正数和负数的分界。了解的这一层意义,也有助于对正负数的理解;且对数的顺利扩张和有理毅概念的建立都有帮助。 所举的例子,要考虑学生的可接受性。“数0既不是正数,也不是负数”应从相反意义的1这个角度来说明。这个问题只要初步认识即可,不必深究。[活动2]问题3:教科书第6页例题展示老师的存折—1000表示什么意思+1500表示什么意思?,例题6在地形图上表示某地的高度时,需要以海平面为基准(规定海平面的海拔高度为0)。通常用正数表示高于海平面的某地的海拔高度,负数表示低于海平面的某地的海拔高度。珠穆朗玛峰的海拔高度为8848米,它表示的什么含义?吐鲁番盆地的海拔高度为–155米。它表示什么含义?例题7记录帐目时,通常用正数表示收入款额,负数表示支出款额。则收入50元可记为多少元?支出23元可记为多少元?对两道例题进行分析说明说明:这是一个用正负数描述向指定方向变化情况的例子, 通常向指定方向变化用正数表示;向指定方向的相反方向变化用负数表示。这种描述在实际生活中有广泛的应用,应予以重视。教学中,应让学生体验“增长”和“减少”是两种相反意义的量,要求写出“体重的增长值”和“进出口额的增长率”,就暗示着用正数来表示增长的量。 归纳:在同一个问题中,分别用正数和负数表示的量具有相反的意义(教科书第6页). 类似的例子很多,如: 水位上升-3m,实际表示什么意思呢? 收人增加-10%,实际表示什么意思呢? 等等。可视教学中的实际情况进行补充。这种用正负数描述向指定方向变化情况的例子,在实际生活中有广泛的应用,按题意找准哪种意义的量应该用正数表示是解题的关健。这种描述具有相反数的影子,例如第(1)题中小明的体重可说成是减少-2kg,但现在不必向学生提出。通过具体实例,激发学生的学习热情,调动学生的学习兴趣,使学生对正负数表示相反意义的内涵有比较充分的感知,深层次的理解相反意义的量,正负数在实际应用中的意义。[活动3]巩固练习 教科书第6页练习学生独立完成练习,交流、展示解题过程。教师巡视,收集学生在本次活动中有价值的信息,结合学情做必要点评。学生思考问题,谈谈自己的观点,并说明理由。通过练习使学生从不同的侧面,不同的视角进一步深化对频率估计概率的理解与认识。[活动4]课堂小结1,引人负数后,你是怎样认识数0的,数0的意义有哪些变化?2,怎样用正负数表示具有相反意义的量?以问题的形式,要求学生思考交流:学生自己总结发言,其他学生补充完善,教师做必要的归纳总结(用正数表示其中一种意义的量,另一种量用负数表示;特别地,在用正负数表示向指定方向变化的量时,通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变化的量规定为负数。)总结回顾学习内容,帮助学生学会归纳,反思。通过归纳总结,培养学生的归纳总结能力,通过课外作业,使学生进一步理解,内化知识。[活动5]本课作业必做题:教科书第7页习题1.1第3,6,7,8题学生独立完成作业反馈教学效果
《正数与负数》教案 12
2.1正数和负数(第一课时)
2、请你把下面句子中的量用“+”或“-”的数表示出来
教师根据学生的回答,归纳总结,同时板书课题及正、负数的概念。
教师让多个学生自由发言
四、应用迁移,巩固提高
(出示幻灯片四)
1、如图是一个正方体纸盒的展开图,请把-11,12,11,-2,-12,2分别填入六个正方形,使得按虚线 折成的正方体后,对面上的两个数互为相反数。
2、请你在下面的圈中填上适合的数,使得圈内的数依次为整数集、有理数集、正数集、分数集、负数集。
教师参与学 生的讨论,启发、鼓励学生的动手尝试,对学生的答案给予鼓励性评价。在讲台上展 示不同学生的答案。
五、学习总结:
提问:今天你获得了哪些知识?
教师参与互动,并给予鼓励性评价
教师简要点评:今天我们学习了有理数的意义和两种分类的方法及相反数的概念,我们要能正确地判断一个数属于哪一类,要特别注意“0”的。正确说法。
1、课堂检测
2、生活中,我们也常常对事物进行分类,请你举例说明。
学生同桌讨论、交流,自由发言
学生踊跃发言,相互补充
学生观察思考,分组讨论,尝试归纳
学生进一步讨论、交流、总结、归纳
学生观察思考,小组讨论,交流发现和概括出“相反数”
学生抢答
1、3题学生抢答,尽量照顾不同层次的学生参与的积极性;
2题学生讨论、交流选代表回答。
1题学生可动手实际操作
同桌或小组讨论合作研究完成
学生相互交流自己的收获和体会
综合考查
学以致用
对所学过的数作了梳理和回顾,自由发言激发了学生学习的热情和求知欲。
为有理数的分类作准备
培养了学生观察、思考、总结、归纳的能力,同时培养学生对数分类讨论的观点
通过再分类培养学生树立对立与统一的思考方法,对学生进行辩证唯物主义教育。
培养学生观察能力,合作探究意识,总结、归纳的能力和语言表达能力。
在练习中进一步巩固相反数的概念。
巩固所说的知识
通过练习培养学生的动手操作能力和团结协作的精神,有助于提高学生运用所学知识解决实际问题的能力。
锻炼学生的语言表达能力和归纳概括能力
考查学生对本节知识的掌握情况,锻炼学生综合运用知识,独立解决问题的能力
附板书设计:
2.1正数和负数(二)
1、有理数的两种分类:
(1) (2)
教学反思:
本节课通过情境教学导入新课,并且在教学过程中,教师扮演的是组织者、引导者、合作者的角色,学生成为了学习的主人,主动去观察、讨论、交流、总结、归纳,体现了新课程理念,但在整个的教学过程中还缺乏与实际生活的联系,教师在此方面还须努力挖掘这方面的素材,让学生真正体会到数学知识于生活,又反作用于生活。
《正负数》教案 13
教学目标:
1、知识与技能:学生通过感知正数与负数,初步体会生活中的负数是根据需要来界定的,体验具体情境中的负数;知道正负数是一个相对的概念,并且表示在一个情境中成对出现的两个具有相反意义的量。
2、过程与方法:通过举例、尝试、探索等数学活动,初步培养学生的辨证思维能力和问题意识。
3、情感态度、价值观:激发学生对数学的浓厚兴趣和热爱,培养学生的合作意识;激发民族自豪感,渗透爱国主义教育。
教学步骤:
一、创设情境,引入新课。
1、出示天气预报图,谈话:上节课,我们学习了温度。现在谁能说说,你知道哪些有关温度的知识?
(1)、温度有零上温度和零下温度,还有零度;
(2)、零度既不是零上温度,也不是零下温度,而是分界点;
(3)、以前学过的数只能够表示零上温度或零度;
(4)、-2,-5,-20等可以表示零下温度;
(5)、城市的温度与它们的地理位置和海拔高度有关……
2、分类:大屏幕上这些表示温度的数,每个小组桌面上的信封里也都有一套。下面请四人小组合作,把这些数分分类。
学生汇报分类情况,将数字卡片贴在黑板上。
讲述:第一类,像5,13,20,32,…都是正数,有时在正数前面添上“+”号,如+5,+13,+20,+32;第二类,像-2,-12,-20,…都是负数;0该归哪一类?你有什么问题?
板书: 负 数 分界点 正数
5、13、+20、+32……
-2、-12、-20……
0
老师这儿还有两个小数,读一读:+7.6,-3.4,你们说该归哪一类?
这就是我们今天要学习的“正负数”。(板书课题)
3、谁知道正负数是哪个国家的人们最早使用的?我们来听听小博士是怎么说的:(放录音)
二、联系图示,感受负数。
好,昨天老师布置了一项作业,让大家回去了解生活中还有哪些类似温度这样的现象,下面先请大家在小组里说一说:还有哪些量需要用正数和负数表示呢?
小组汇报,配合实物演示,如存折等。随机出示书中习题:
1、世界上最高珠穆朗玛峰比海平面高出8848米,如果这个高度表示为+8848米,那么比海平面低155米的新疆吐鲁番盆地的高度,应表示为( )米;海平面的高度为( )米。
对于这道题,你有什么疑问?你知道“海拔高度”是以什么为标准的吗?“高”和“低”是相对的,说明正负数也是……?谁还会说?
非常好!像这样相对的正负数例子,哪一组还有?
2、如果小华家月收入2500元记作+2500元,那么他家这个月水、电、煤气的支出200元应记作( )元。
3、如果电梯上升15层记作+15层,那么它下降6层应记作( )层。
这是以哪里为分界点?(电梯原来所在位置)上升和下降正相反,那么正数和负数表示的量呢?
4、如果进了3个球记作+3,那么失2个球应记作( )。
还有谁有不同的发现?继续举例!
5、游戏:锤子、剪刀、布。
先说说能用今天学的正负数来记分吗?怎么记?同桌两人一组,共玩五局,要求边玩边记分,记住:平局别忘了记分。开始!
比赛情况记录表
局数
姓名
第一局
第二局
第三局
第四局
第五局
记分规则:胜一局,记1分;平一局,记0分;输一局,记-1分。
哪一桌同学来汇报?
三、基本练习。
1、试一试:青蛙刚开始的位置在0处,它每次跳3格,请写出青蛙每回跳到的位置所表示的正负数。(学生回答完,动画显示)
第一回:青蛙从0点连续向右跳两次,记作?我记作+2行吗?为什么?
第二回:青蛙从0点连续向左跳两次,记作?为什么?
第三回:青蛙先向右跳1次,再连续向左跳两次,记作?我记作-6行吗?为什么?
观察这几个数:+6、+3、0、-3、-6,哪个数最大?哪个数最小?你有什么发现?
小结:正负数比大小时可以借助直线上的点,越往右越大。
2、老师这儿有一些数,可是顺序打乱了,谁愿意帮忙排一排?先读出卡片上的数,并说说它是正数还是负数。
+6,-8,+38,27,-60,0,-100。
把卡片发给学生,让他们从小到大排成一队,其他同学当裁判。
为什么-60比-100还大?(也可借助直线)
3、做一做:填书93页(2)、(3)。投影汇报。
(2)请你在表格内用正负数记录小明家的收支情况。
5月4日 爸爸工资收入1500元。
5月6日 水、电、煤气支出200元。
5月12日 电话费支出120元。
5月15日 妈妈工资收入1400元。
5月20日 爸爸购买衣服支出150元。
5月28日 订报刊、买书支出80元。
5月31日 结算本月伙食费支出650元。
填表,然后小组汇报。
(3)下图每格表示1米,小华刚开始的位置在0处。
西 东
a、小华从0点向东行5米,表示为+5米,那么从0点向西行3米,表示为( )米。
b、如果小华的位置是+7米,说明他是向( )行( )米。
c、如果小华的位置是-8米,说明他是向( )行( )米。
d、如果小华先向东行5米,再向西行8米,这时小华的位置表示为( )米。
四、全课总结:
今天你有什么收获?还有哪些问题?
你认为谁的表现最出色?
五、拓展练习:下表记录的是上一周小丽每天做作业的时间。
(1)、平均每天做作业的时间是( )分。
(2)、如果把每天做作业的平均时间作为标准,超过平均时间用正数表示,不足平均时间用负数表示,请把下表填写完整。
星期一
星期二
星期三
星期四
星期五
平均时间
30分
10分
25分
15分
20分
你从表上了解到哪些信息?
什么叫“以平均时间为标准”?
课后同学们可以继续调查了解,感受生活中的负数。
(由于负数的学习是在正数基础上的拓展,与正数的意义相比,学生在理解上还是有一定难度的。因此我在教学设计时充分考虑应用学生已有的知识和生活经验,创设与学生生活素材密切相关的数学情境,让他们亲历知识形成的过程:在数据的收集过程中,认识负数在日常生活中的作用;在理解的基础上,提高数学的应用意识。整节课力求做到“动静结合,张驰有序”,使学生愉快地学习。另外,课件的设计新颖独到,获得了福建省“信息技术与学科整合”课例评比一等奖,选送全国参赛;并被中央电教馆评为“国家基础教育优秀示范课例”。)
《正负数》教案 14
·教学内容:北师大版数学教材第七册86-87页 。
·教材分析:
《正负数》是北师大版小学数学实验教材四年级上册第七单元《生活中的负数》的第二课时。教材通过正负数在生活中的一些应用实例,引导同学们在实际生活中感受正负数在生活中的应用,理解、感受正、负数及0的意义,为进一步学习正负数打下较好基础。
·学情分析:
第一课时《温度》的学习,学生已经了解了零上、零下温度的区别、读写方法,并形象而生动地感受了负数产生的背景及其在生活中的实际意义和应用。本节课学习《正负数》较为轻松有趣,但应用正负数解决、理解生活中的实际问题会有一定的困难和挑战性。
·教学目标:
知识与技能:学生通过感知正数与负数,初步体会生活中的负数是根据需要来界定的,体验具体情境中的负数;知道正负数是一个相对的概念,并且表示在一个情境中成对出现的两个具有相反意义的量。
过程与方法:通过举例、尝试、探索等数学活动,初步培养学生的辨证思维能力和问题意识。
情感态度、价值观:激发学生对数学的浓厚兴趣和热爱,培养学生的合作意识;激发民族自豪感,渗透爱国主义教育。
·教学重、难点:了解正负数的意义,应用正负数表示生活中具有相反意义的量。
·教学过程预设:
(一)、组织课前游戏:
同学们,我们先来做个游戏,好吗?游戏的名字叫“截然相反”。规则是:老师说一句话,你们要快速地说出和这句话意思相反的话。
零上温度上车前进
做生意赚了钱足球比赛进了球
(二)创设情境,引入新课:
(一)、通过记录相反意义的数量,初步了解负数的意义:
1、下面老师说几件生活中的事,请同学们记录相关信息。
要求:简明扼要,能看懂,记录时可以使用文字或者符号。
2、师叙述,生记录:
足球比赛,中国队上半场进了2个球,下半场丢了2个球。
四照园小学2006年,四年级共转入15个学生,五年级共10个学生。
小明的妈妈做生意,三月份赚了6000元,四月份亏了2000元。
3、反馈学生记录情况,集体讨论。
2 15 6000
2 10 2000
有什么看法?
进2 四15 赚6000
丢2 五10 亏2000
能不能看懂?他是用简要的文字来记录相关信息的。还有别的表示方法吗?
(3)2□ 15□ 6000□
2☆ 10☆ 2000☆
这样的方法怎么样?为什么?
想一想:自己用的符号只有自己能懂,而我们的记录是要让人交流的。怎样才能让我们大家都明白?
还有没有别的表示方法?
(4)+2 +15 +6000
-2 -810-2000
请把你的方法给大家介绍一下。
这种方法好吗?好在哪?这个同学借用了数学中的“+”“-”,采用不同的方式来记录。
其实他用的符号跟数学家规定的一模一样。现在人们常用这种方法来区别两个相反的量。
4、明确概念,了解正数、负数的读法和写法
(1)介绍正号、负号。
这里用到的“+”“-”意义和以前不一样,在这里是正号、负号。不再读加、减,而读正、负。
(2)进两个球用“+2”表示(板:+2)会读吗?丢2个球用“-2”表示(板:-2),怎么读?
(3)下面我们来快速抢读:-100 +7.6 -3.4 58(生读一个师问一个:正数还是负数?)
58是正数还是负数?为什么?
正数前面的正号可以省略不写,那负数前面的负号可以省略吗?为什么?
小结:不错,既然要表示不同意义的量,当然就应有不同的表示形式。
【设计意图:根据课堂实际生成的结果粗略统计,使用“+”、“-”的约占20%;使用“↓”、“↑”的约占10%;使用其它符号的约占10%;写成“盈利6000元”、“亏损2000元”的约占40%……从这组数据来看应该说预期的目的达到了,大部分学生在动脑筋想办法力求使自己记录的形式简捷明了。另外,从学生的情感来看,他们对数据本身的内容也很感兴趣,因为这些事就发生在他们的身边。】
【点评:创设记录数据这一情境,呈现了学生的原认知状态。活动要求:记录数据时要准确、简捷、快速,这个活动的目的性强,有思考的价值,也易于操作,所以通过尝试,学生逐渐体会到了数学符号的优越——简捷明了。同时也让学生经历了一种数学化的再创造的过程:由繁到简、由文字叙述到符号表达,充分感悟了负数产生的必要性。】
5、出示史料,进一步了解负数的历史。
同学们今天认识到的负数,2000多年前在我国就开始应用了。让我们一起了解一下。
通过这段介绍,你有什么感想?
同学们也很聪明,这么快就想出了用正数、负数表示生活中的有关数据。
【设计意图:此环节的设计意图是了解关于负数的史料,增强民族自豪感。如果增加一些有关负数史料的图片要比只看文字介绍效果好。】
(二)借助温度,初步感知正负数。
1、回忆自己见过的负数。
师:负数一直延用至今,请你说一说你在哪见过负数?
生1:每天的天气预报中,零下的温度就用负数表示。
师:老师正好收集了这方面的资料,请大家来看一看。(播放2005年3月8日中央台预报长春、哈尔滨、沈阳的天气预报)
生2:我还在电梯里见过,地下一层用-1表示。
生3:我还在计算器上见过。
师:(出示计算器)请你来演示一下。
生:拨出7-9=-2
师:(出示存折)谁能说一说-600是什么意思吗?
生4:表示从银行取出600元。
师:那+2000元表示什么呢?
生5:存入2000元。
【设计意图:预设学生会说出很多,如:天气预报中用负数、计算器中有负数、电梯、股市、存折、账单上、冰箱中、玩电脑游戏的计分……从现场教学来看,大多数学生对天气预报用到负数、计算器中会有负数是比较熟悉的,对其它方面了解得比较少。】
【点评:激活学生的已有生活经验并对这些零散的知识进行梳理,适时引导与点拨,恰到好处。】
2、读出温度计上的温度。
师:下面我们就从天气预报入手,深入研究负数。(屏幕显示:有关上海、南京、北京的景物图片,每个图片旁有温度计显示当天的温度。)谁能从温度计上读出上海的温度?
生1:零上2摄氏度。
生2:不对,应该是零上4摄氏度。
师:谁能说清楚到底是零上2摄氏度是零上4摄氏度。
生:温度计上看:从0度到10度平均分成了5份,每份是2度,第2格就应该是4摄氏度。
师:你很善于观察。我也推荐给大家一个验证的方法,假定这是2摄氏度,顺着往上数2、4、6、8,10度反而成8度了,说明2度是错的,4度是对的。
师:南京多少度呢?
生:0摄氏度。
师:北京呢?
生:零下4摄氏度。
师:零摄氏度可以记作:0℃,零上4摄氏度可以记作:+4℃或4℃。那么零下4摄氏度可以记作什么呢?(写在纸上)
生:-4℃。
师:“-”这个符号表示什么?
生:表示的是零下的温度。
师:+4℃、-4℃表示的是同一个温度吗?
生:不是,+4℃是零上的温度,-4℃是零下的温度。
【设计意图:结合天气预报中的温度,了解负数的意义。学生在生活中都见过温度计,但多数同学不能熟练认读温度计。所以,简单介绍温度计时是很必要的。预设学生会把老师出示的温度计上的一格误认为是1℃,这时引起学生的争论从而明确一格表示2℃。在此,老师又介绍了一种方法来证明一格是2℃,目的是渗透多角度思维的意识。】
3、在温度计上拨出温度的变化。
师:我们国家有一个地方在同一天里温差很大,你们知道是哪里吗?
生:不知道。
师:(出示图片)新疆吐鲁番地区在九月份,早晨的气温在0℃以下,中午的气温可以升到40℃以上。请你们在温度计上拨出这个温度变化。
生:独立动手拨温度计。
师:请一个同学到前边为大家演示一下你拨的过程,请其他同学配合温度变化做出动作或用语言描述出温度的变化。
(学生操作及配合语言动作)
师:从温度计来看,越热说明度数越高,越冷说明什么呢?
生:度数低。
师:北京某一天白天的最高气温5℃,夜晚最低降至-5℃。请你在温度计上拨出这个温度变化。
(学生操作)
师:你能知道5℃和-5℃相差多少度吗?
生:10℃。
师:你是怎么知道的?
生1:从温度计上一格一格数出来的。
生2:5℃比0度高5度,-5℃比0度低5度,2个5度正好是10度。
【设计意图:从现场教学来看预设的效果达到了,学生确实看到正负5距0刻度都是5个格,感受的到两个相反数的位置关系。】
【点评:在具体情境中感受正负数的大小变化。每个学生都来拨温度计,激发他们学习的兴趣,并用语言活动作表示出冷暖,让他们切身感受到负数大小的变化,在具体情境中充分感知相反数和两个温度之间的差。】
用正负数表示海拔高度。
师:刚才吐鲁番的温度变化与它的地理特征有关系。(出示图片)如果把海平面定为零,吐鲁番比海平面低155米利用正负数的知识可以怎么记?珠穆朗玛峰比海平面高8844.43米又可以记作什么呢?请你读出来。
生:负155米,正8844.43米。
师:你能把说的记录在纸上吗?
(学生记录)
【点评:学会用正负数表示海拔高度并记录下来这样做可以把基础知识学习和基本技能的训练落到实处。】
4、在数轴上认识正负数。
师:淘气有问题要请教你们了。他把温度计横着来看,以0℃为界,哪边的温度可以用正数表示?哪边的温度可以用负数表示呢?
生:0右边的温度可以用正数表示,0左边的温度可以用负数表示。
师:让温度计继续变化,它就变成了以后我们要深入学习的数轴了。(指数轴)这是+1,这是几呢?
生:+2。
师:这是几?
生:+3。
师:-1在哪?
生:在数轴上指出相应的点。
师:-2在哪?
生:在数轴上指出相应的点。
师:-3在哪?
生:在数轴上指出相应的点。
师:+5、-5分别在哪?
生:指出+5的相应位置(数轴上没标出-5的点,学生疑惑)。
师:难道就没有-5了?
生:有。在这(指出-5的大致位置)。
师:负数多少个?
生:无数个。
师:正数多少个?
生:无数个。
【设计意图:从现场教学来看,以温度计为基础认识数轴很“妙”。学生真正感受到0是分界点,再由课件上显示出的变化使学生真正感受到正负数有无限个。】
【点评:借助温度计“做足文章”。以温度计为基础认识数轴,在数轴上能找到数的相应位置,感知正负数的个数有无限个,很有创意。】
5、分类,界定正负数和零。
师:把-155米、+8844.43米、5℃、-5℃、+2千克、-4千克的单位名称去掉,这些数怎么分类吗?
生:-155、-5、-4是负数类; +8844.43、+5、+2是正数类。
师:(师板书:正数负数)-9、+2.3、0、99、0、-129、0分别是正数还是负数?请你把它们贴到黑板的相应位置(-9、+2.3、0、99、0、-129、0分别写在纸上,课前发给了7位学生)。你若认为说不清楚的,就贴在说不清的下面(是贴上写有说不清的纸条)。
(学生活动后把写有-9、-129的纸条贴到负数的位置,把写有+2.3、99的纸条贴到正数的位置,三个人都把写有0的纸条贴到了说不清的位置。)
生1:(急切地说)0可以是正数也可以是负数。
生2:0即不是正数也不是负数。
师:(顺势)在黑板上点上一点,这一点表示0的位置,这一点不包括正数和负数,你说的是这个意思吗?
生:是。
生:0是分界点,它比负数大但比正数小。
师:(顺势)把负数、0、正数用小于号连接。你能结合温度计或海拔高度说一说你的理由吗?
生:温度计上0以上是0上的温度,0以下是零下的温度,0即不是零上的也不是零下的,所以0单独是一类。
生:海平面看作0,海平面以上是正数,海平面以下是负数,0是标准,所以它单独是一类。
师:你们答得太精彩了。
【设计意图:把数量去掉单位名称并分类是本节课的难点,所以设计了这个分类的活动。从现场教学来看,对于0的认识这个难点抓得很准,而且用这种形式处理也很好地突破了难点。尤其让学生结合温度计和海拔高度来说一说对0的认识,使教学落在了实处而不是“虚晃一枪”。】
【点评:营造学生的认知冲突,引起争论深化认识和理解过程,培养了学生的分析问题能力和抽象概括能力。】
(三)借助实例,解释应用。
其实在生活中经常用到负数。
1、教师展示一组生活中的正负数的例题,让学生重点讨论:
电梯中的正、负数。
我们来看看电梯按键,读出上面的负数。-1表示什么意思?1呢?那你知道-2表示什么意思吗?2呢?
海拔高度中的正、负数。
不仅电梯中有正数、负数,生活中海拔高度也是用正数、负数来表示的。
请看图,这是海平面,从图上你了解到什么?
出示题目,学生回答。
小结:在刚才的学习中,上车15人用+15表示,下车8人用-8表示;赚5000元用+5000表示,亏1000元用-1000表示;地面以上1层用1表示,地面以下1层用-1表示,那用正数、负数表示的量具有怎样的关系?
强调:不错,在生活中我们经常用正数、负数表示两个相反意义的量。
2、请你回忆一下,生活中你曾经在哪见到过负数?结合学生的举例,进行解释说明。
3、看书质疑。
(四)巩固练习,拓展提高。
1、说一说下列负数表示的意思。
小明向南行20米记作+20米,那么-5米表示________________________。
一个班级进行选举,投赞成票的有20人,记作+20人,那么-12人表示__________________。
如果体重增加3千克记作+3千克,那么-2千克表示_____________________。
2、我们还可以用正负数记录收支情况,请做第87页1题。
如果-60元表示支出60元,那么收入100元记作________元。
如果考试成绩提高35分记作+35分,那么考试成绩下降7分记作________分。
如果向东走10km记作+10km,那么向西走8km记作________km。
(五)回顾总结,课外延伸。
师:我们一起来回忆这节课所学的内容。(屏幕逐次一对一对显示)
零度以上 零度以下
海平面以上 海平面以下
地面以上 地面以下
收入 支出
盈利 亏损
…… ……
(学生在轻柔的音乐声中静静地看,静静地想)
师:你还想说什么?
生1:左边一列的数据都可以由负数表示,右边一列都可以用负数表示。
生2:左右的意思是相反的。
师:你很善于总结概括。意义相反的量就可以用正负数来表示。
生3:我还想补充:前进后退可以分别用正数和负数表示。
生4:增加减少可以用正负数表示。
【点评:给学生提供可回忆的材料,引起学生的思考,培养学生的反思、自省意识,而不是随便问问学完这节课你有什么收获,草草收场。】
(六)布置作业:第87页2题。
《正负数》教学反思
本节课中教师能整体把握教学内容,精心预设教学的各个环节,给学生提供了较大的思考空间,创设了多个贴近学生认知规律且适合学生学习的教学情境,为学生的进一步学习生成了丰富的教学资源。教师钻研教材,理解数学内涵比较深入,课堂教学过程中显示出了独有的教学风格——细腻。本节课细细揣摩有以下几个方面是值得借鉴的。
1.从实际生活的真实情境中呈现学生的原认知,由此深入展开对问题的探究。
“我们在日常生活中经常要记录数据,请同学们来记录下面三组数据。要求记录时做到准确、简捷、快速”这样开放性的活动,以实际生活的真实情境为研究素材,呈现出了四种不同的记录结果,透视出学生的原认知状态,在此基础上展开对新问题的研究,既让学生充分感受了研究负数产生的必要性,又能针对本班学生的实际情况调整教学策略。为实施有效的教学做好了充分的准备。
2.运用多种教学活动方式,突出活动的实效性。
教学中,教师运用了多种活动方式。从天气预报中听一听;在存折上认一认;根据各地的气温读一读;在实际生活中举例说一说……让学生体会生活中大量存在的具有相反意义的量,体会数学与生活的密切联系。
本节课教师充分利用温度计这个教具“做足文章”,从温度计上读出温度;尝试写出温度-5℃、-20℃;在温度计上拨出指定温度;把温度计横放后抽象出数轴,这些都为学生认识正、负数提供了非常形象的依据,学生学习起来有具体的事例做依托,抽象的概念就容易理解。
活动中老师在充分发挥学生的主体作用同时也没有忽略自己的主导地位,多次在关键处设问“上海(零上4摄氏度)和北京(零下4摄氏度)的温度相同吗”“-5℃、-20℃比较谁低,谁高”“+5℃、-5℃之间相差多少度“……在活动中学生不仅动手做,而且动脑思考问题,再通过交流就能使学生掌握重要的数学的思想和具体的学习方法,这样的数学活动实效性就明显。
3.深挖知识背后折射出的数学思想、方法,正确引导学生认识客观世界。
《生活中的负数》这个内容如果把握不好极易片面理解,单单强调负数而忽略另一方面。客观事物都是相互依存的,没有“正”也就谈不上“负”,事物的两个方面缺一不可,这是辨证法的基本观点。通过这个教学内容要传递给学生的也是这样一种思想,要提到这样一个高度上来认识。所以,整节课中教师紧紧围绕两个相反意义的量让学生接触、认识、研究,最后才有了课的结尾学生感悟到的:“前进后退可以分别用正数和负数表示”。“增加减少可以用正负数”“意义相反的量就可以用正负数来表示”……这样一些正确的认识和理解,这里面教师的引导功不可没。
分类是认识事物的基本方法,人们在认识周围事物时大都是先按标准将其分类,然后再辨析,最后获得对其完整的清晰的认识。在认识正负数时教师也采用了分类的方法,同时重点研究0的问题。分类时学生就把0放在了“说不清”这样一个位置上,通过辨析与解释,得出了结论“0既不是正数也不是负数”。
以上这些设计可以反映出老师研究问题比较深、透,视角开阔,不局限于教材设定的一个局部空间内,而是广集资源,充分研发,为我所用。
正数与负数的教案 15
教学目标
1、使学生理解正数与负数的概念,并会判断一个给定的数是正数还是负数;
2、会初步应用正负数表示具有相反意义的量;
3、使学生初步了解有理数的意义,并能将给出的有理数进行分类;
4、培养学生逐步树立分类讨论的思想;
5、通过本节课的教学,渗透对立统一的辩证思想。
教学建议
一、重点、难点分析
本课的重点是了解正数与负数是由实际需要产生的以及有理数包括哪些数。难点是学习负数的必要性及有理数的分类。关键是要能准确地举出具有相反意义的量的典型例子以及要明确有理数分类的标准。
正、负数的引入,有各种不同的方法。教材是由学生熟知的两个实例:温度与海拔高度引入的。比0℃高5摄氏度记作5℃,比0℃低5摄氏度,记作—5℃;比海平面高8848米,记作8848米,比海平面低155米记作—155米。由这两个实例很自然地,把大于0的数叫做正数,把加“—”号的数叫做负数;0既不是正数也不是负数,是一个中性数,表示度量的“基准”。这样引入正、负数,不仅有利于学生正确使用正、负数表示具有相反意义的量,而且还将帮助学生理解有理数的大小性质。把负数理解为小于0的数。教材中,没有出现“具有相反意义的量”的概念。这是有意回避或淡化这个概念。目的是,从正、负数引入一开始就能较深刻的揭示正、负数和零的性质,帮助学生正确理解正、负数的概念。
关于有理数的分类要明确的是:分类标准不同,分类结果也不同,分类结果应是不重不漏,即每一个数必须属于某一类,又不能同时属于不同的两类。
二、教法建议
这节课是在小学里学过的数的基础上,从表示具有相反意义的量引进负数的。从内容上讲,负数比非负数要抽象、难理解。因此在教学方法和教学语言的选择上,尽可能注意中小学的衔接,既不违反科学性,又符合可接受性原则。例如,在讲解有理数的概念时,让学生清楚地认识有理数与算术数的根本区别,有理数是由两部分组成:符号部分和数字部分(即算术数)。这样,在理解算术数和负数的基础上,对有理数的。概念的理解就简便多了。
为了使学生掌握必要的数学思想和方法,在明确有理数的分类时,可以有意识地渗透分类讨论的思想方法,理解分类的标准、分类的结果,以及它们的相互联系。通过正数、负数都统一于有理数,可以将对立统一的辩证思想的逐步树立渗透到日常教学中。
三、正数与负数概念的理解
1﹒对于正数和负数的概念,不能简单的理解为:带“+”号的数是正数,带“—”号的数是负数。
2﹒引入负数后,数的范围扩大为有理数,奇数和偶数的外延也由自然数扩大为整数,整数也可以分为奇数和偶数两类,能被2整除的数是偶数,如…—6,—4,—2,0,2,4,6…,不能被2整除的数是奇数,如…—5,—4,—2,1,3,5…
3﹒到现在为止,我们学过的数细分有五类:正整数、正分数、0、负整数、负分数,但研究问题时,通常把有理数分为三类:正数、0、负数,进行讨论。
4﹒通常把正数和0统称为非负数,负数和0统称为非正数,正整数和0称为非负整数;负整数和0统称为非正整数。
四、有理数的分类
整数和分数统称为有理数。
1)正整数、零、负整数统称为整数;正分数、负分数统称为分数。
2)整数也可以看作分母为1的分数,但为了研究方便,本章中分数是指不包括整数的分数。
3)注意概念中所用“统称”二字,它与说“整数和分数是有理数”的意思不大一样。前者回避了分数是否包括整数的问题,即使把整数包括在分数范围内,说“统称”还是不错,而用后一种说法就欠妥了。
4)分数和小数的区别:
分数(既约分数)都可表示成小数,但不是所有的小数都能表示成分数的。
5)到目前为止,所学过的数(除π外)都是有理数。
《正负数》教案 16
教学内容:北师大版数学教材第七册第七单元《生活中的负数》
教学目标:
1.在熟悉的生活情境中,进一步体会负数的意义。
2.会用负数表示一些日常生活中的现象。
教学重点:了解正、负数的意义,应用正、负数表示生活中具有相反意义的量。
教学难点:了解负数的意义及0的内涵。
教具:课件
学情分析:
本课的教学对象是四年级上期的学生,他们以前学习的都是零以及零以上的数,本课是对学生学习的数范围的一次扩展,让他们认识还有比零小的数,对学生来说是一次比较大的改变。本课的设计按学生的认知规律先从学生熟知的一些事情入手,让学生根据已有的经验先尝试表示一些生活中的相反的量,让学生认识到学习负数的必要性。
教学设计:
教学流程
教 师 活 动
学 生 活 动
听课体会
一、课前游戏
说反义词:师说一个词语
说出反义词
二、创设情境,引出新知
1、通过记录相反意义的数量,初步了解负数的意义
(1)要求
师:生活中也有很多意义相反的量,就拿这次上次单元考试来说吧,有的同学成绩高于平均分,而有的同学的成绩低于平均分。这是不是一对意义相反的量呢?老师这儿还有几组意义相反的量,你们想不想听?不过老师有个要求,那就是边听边把它们记录在这张表格中。(出示记录表)记录的时候你可以选择自己喜欢的方式,但是记录得要准确、简洁,让人一眼就能看明白你所表示的意思。
倾听
弄清楚要求
出示表格
①海平面
②成绩记录
③助民超市
④存钱
吐鲁番盆地
答对
三月份
小明妈妈
珠穆朗玛峰
答错
四月份
小红妈妈
五月份
(2)依次出示三句话
① 答对得10分,答错扣10分。
② 助民超市,三月份赚了16900元,四月份亏了127元,五月份赚了15200元。
③小明妈妈到银行存入800元,小红妈妈到银行取出200元。
2、反馈学生记录情况,集体讨论。(展示学生作品)
(生:有的用文字表示,有的用符号表示)
师:刚才同学们用了不同的方法去记录,大家说得也都有道理。可是如果每个人都按照自己的想法去表示,结果会怎么样呢?那你觉得应该怎么办?(生:要统一)要想让大家都明白,数学家们制定出了一个统一的标准。那你认为数学家们会怎样表达呢?(生:用+10、-10表示)为什么?这种表达有什么好处?(简明、清楚)
观察表格
学生记录
展示自己的记录情况
思考教师提出的问题
3、明确概念,了解正、负数的读法和写法。
师:你知道这样的数叫什么吗?(正数和负数)(板书:正数 负数)哪些叫正数?哪些叫负数?(生答师板书:+8844.43、+10、+16900、+800、-155、-10、-127、-200)在刚才的几组数量中,我们用正数分别代表了高出海平面的山峰、答对的成绩、做生意中赚的钱、存入银行的钱。那谁能说说用负数代表了什么呢?那你会读它们吗?(生读)
师:这里的加号、减号和过去意义有所不同,这里的加号叫做正号,减号叫做负号。读的时候也不读加减了,而是读作正、负。
4、明确研究对象,引出课题
这节课我们就重点来研究这样的数。(板书课题:正负数)
让我们再来读几个正负数。(出示:+100、-75、-1.8、38)这个38前面怎么没有符号?你认为它是正数还是负数?为了简便正数前可以不写正号。谁能来说几个正负数?(生:……)说得完吗?说不完怎么办?(板书:……)谁再来说几个负数?(生:……)说得完吗?(板书:……)正数前的正号可以省略不写,那么负数前的负号可以去掉吗?为什么?
5、出示史料,进一步了解负数的历史。
师:看来啊,负数的出现还真得是很有必要,那你知道哪个国家最早出现了负数吗?猜一猜?让我们通过一段资料一起来回顾负数的历史。
看书:中国是世界上最早认识和应用负数的国家。早在两千多年前的《九章算术》中,就有正数和负数的记载。在古代人民生活中,以收入钱为正,以支出钱为负。在粮食生产中,以产量增加为正,以产量减少为负。古代的人们为区别正、负数,常用红色的算筹表示正,黑色的算筹表示负。而西方国家认识正、负数则要迟于中国数百年。
请学生谈感受。
6、认识正、负数和0的关系。
师:现在黑板上有很多的数,很乱,我们来给它们分分类好吗?谁能用一个圈把所有的正数圈出来,再用一个圈把所有的负数圈出来。(生圈)(注意:要把省略号也圈进去)0表示什么呢?(生:0是分界点)那0属于正数还是负数呢?(生:0既不是正数,也不是负数)那0和正数与负数之间的大小关系是怎么样的呢?你能用大于号或小于号把它们连接起来吗?
(板书:正数> 0 >负数)这是我们今天得出的很重要的两个结论。(出示:所有的正数都比0大,所有的负数都比0小,0既不是正数,也不是负数)
了解这些数叫做正数和负数,学习表的方法
了解正数和负数的读法
了解负数的历史
感受到祖国劳动人民的伟大,充满民族自豪感
研究正负数和零的大小关系
三、借助实例,解释应用
(一)引导学生举例:请同学们回忆一下,生活中你还曾经在哪见过正负数?(生举例:……)
(二)重点讨论
1、用正负数记录小明家的收支情况。(课本90页“练一练”第1题。)
2、下图每格表示 1米 ,小华刚开始的位置在0处。(课本90页“练一练”第2题。)
a小华从0点向东行 5米 ,表示为+5,那么从0点向西行 3米 ,表示为( )米。
b如果小华的位置是+7米 ,说明他是向( )行( )米。
c如果小华的位置是-8米 ,说明他是向( )行( )米。
3、刘翔在第十届世界田径锦标赛半决赛中, 110米 栏的成绩是13.42秒,当时赛场风速为每秒 -0.4米 。
讨论:风速怎么会有负的呢?(请两生分别代表刘翔和风速表演,是相反的)
师:如果风速是+0.4米 ,又是什么意思呢?(再请学生表演)
说说在生活中看到过的正负数
完成练习,交流想法
表演逆风的情境,充分理解正负数的意思
四、总结
师:今天你有什么收获?生活中有更多的负数等着同学们去探索、发现,只要同学们细心观察,一定会用我们所学的知识发现问题、解决问题!
回忆、整理总结
板书设计
正负数
正号 + 正数 > 0 > 负数
+8844.43 -155
负号 - +10 -10
+16900 -127
+800 -200
初一上册数学《正数和负数》教案 17
一、内容和内容解析
1.内容
正数和负数的意义。
2.内容解析
引入负数,将数的范围扩充到有理数,是解决实际问题的需要,也是为了解决数学内部的运算、解方程等问题的需要。本课内容是本章后续的有理数的相关概念及运算的基础。
通过实例引入正数与负数,既能让学生感受负数与现实生活的紧密联系,体会引入负数的必要性,又有助于学生了解正数和负数的意义,从而学会用正数、负数去刻画现实中具有相反意义的量。在刻画现实问题时,通常将“上升”“增加”“盈利”等确定为正,相应地将“下降”“减少”“亏欠”等确定为负。
基于以上分析,确定本节课的教学重点为:感受引入负数的必要性;能用正数和负数表示具有相反意义的量。
二、目标和目标解析
1.教学目标
(1)体会引入负数的必要性;
(2)了解负数的意义,会用正数、负数表示具有相反意义的量。
2.目标解析
(1)学生能自己举出含有相反意义的量的生活实例,说明引入负数的必要性;
(2)学生能借助具体例子,用实际意义(如“增加”与“减少”,“收入”与“支出”等)说明负数的含义。在含有相反意义的量的问题情境中,学生能用正数和负数来表示相应的量。
三、教学问题诊断分析
学生在小学已经学习了整数、分数(包括小数),即正有理数及0的知识,对负数的意义也有初步的了解,还会用负数表示日常生活中的一些量,但他们对负数意义的了解非常有限。在一些比较复杂的实际问题中,需要针对问题的具体特点规定正、负,特别是要用正数与负数描述向指定方向变化的现象(如“负增长”)中的量,大多数学生都会有困难。这既与学生的生活经验不足有关,同时也因为这样的表示与日常习惯不一致。突破这一难点,需要多举日常生活、生产中的实例,让学生通过例子来理解正数与负数的意义,学会用正数、负数表示具有相反意义的量。
本节课的教学难点为:用正数、负数表示指定方向变化的量。
四、教学过程设计
1.创设情境,引入新知
教师展示教科书图1.1-1,并提出
问题1 哪位同学知道这些图片介绍的是什么内容?
学生回答。教师补充说明数的产生产生与日常生活、生产实践的关系,感受数随着社会发展而发展的必要性。
【设计意图】使学生感受数的产生和发展离不开生活和生产的需要。
问题2 请同学们阅读本章的引言。你能尝试着回答一下其中的问题吗?
学生思考并尝试解释。对于其中的问题(1),如果本地气温有低于0℃的情况,可以选择自己所在地区的气温状况进行描述。
【设计意图】引言中的问题,有的学生凭生活经验可以回答,有的不能回答。让学生阅读并尝试回答,一方面让他们感受在生活、生产中需要用到负数,另一方面让他们知道,要解决这些问题,就需要学习新的数的知识,从而激发学生的求知欲。
2.观察感知,理解概念
问题3 根据小学的知识,你能指出上述例子中哪些是正数,哪些是负数吗?
学生回答,给出正确答案后,教师给出正数、负数的描述性定义:
大于0的数叫做正数,在正数前加上符号“-”(负)的数叫负数。
问题4 阅读课本第2页倒数第二段。你能举例说明什么叫一个数的符号吗?
学生阅读,举例。只要学生能举出与课本上不同的例子,并说明它们的符号就表明他们看懂了这段话。
教师补充说明:一般的,正数的符号是“+”,负数的符号是“-”。0既不是正数,也不是负数。
【设计意图】让学生阅读课文,以培养他们的读书习惯。通过学生举例,可以检验他们对这段课文的理解情况。因为“0既不是正数,也不是负数”是一种规定,所以老师直接说明,学生记住就可以了。
3.例题示范,学会应用
例:(1)一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值;
(2)某年,下列国家的商品进出口总额比上年的变化情况是:美国减少6.4%,德国增长1.3%,法国减少2.4%,英国减少3.5%,意大利增长0.2%,中国增加7.5%.写出这些国家这一年商品进出口总额的增长率。
提问:你是怎么理解例(1)的?
如果学生回答不完善,再追问:这个问题中,哪些词表明其中含有相反意义的量?小华体重减少1kg,你认为应该怎样表示他的体重“增长值”?
师生合作回答上述问题。估计学生解释体重“增长值”的意义时会出现困难,教师可以在学生解释的基础上补充总结:体重增长值可能是正的,也可能是负的。体重增长值为负数,相当于体重减少。
再提问:你能仿照第(1)题的解答,自己解决(2)吗?
【设计意图】通过具体问题情境,使学生学会用正数与负数表示具有相反意义的量的方法,通过师生合作,突破用正数、负数表示指定方向变化的量这一难点。通过不断追问,引导学生逐步理解题意,重点是找出表示具有相反意义的量的词。
问题5 你能从例题的解答过程中,总结一下如何用正数、负数表示实际问题中具有相反意义的量吗?
学生总结,师生共同补充、完善。要总结出:
(1)先找出表示具有相反意义的量的词,如“增加”和“减少”、“零上”和“零下”、“收入”和“支出”、“上升”和“下降”等;
(2)选定一方用正数表示,那么另一方就用负数表示;
(3)实际问题中,有时需要描述指定方向变化的量,如本例中,进出口总额“减少6.4%”要表示为“增长-6.4%”,这就是说,增长量是一个负数实际上是减少了,也可以说成是“负增长”;
(4)当数据没有变化时,增长率是0.
【设计意图】引导学生及时总结,提炼出可以指导解答其他同类问题的一般性结论。一般而言,我们习惯上把“上升”“盈利”“增加”“收入”等规定为正,把与它们相反的量规定为负。
问题6 请同学们自己举出一个能用正数、负数表示其中的量的实际例子,并给出答案。
【设计意图】让学生用刚刚总结出的结论解决问题。
4.巩固概念,学以致用
练习:教科书第3页练习1,2.
【设计意图】巩固性练习,同时检验用正数、负数表示具有相反意义的量的掌握情况。
5.归纳小结,反思提高
师生共同回顾本节课所学内容,并请学生回答以下问题:
(1)你能举例说明引入负数的必要性吗?
(2)你能用例子说明负数的意义吗?
(3)有人说,增长一个负数就是减少一个正数,减少一个负数就是增加一个正数。你能举例说明吗?
6.布置作业:教科书习题1.1第1,2,4,8题。
五、目标检测设计
1.以下各数20__年07月08日 - 一帆风顺 - 一帆风顺祝大家健康快乐!天天都有好心情中,正数有 ;负数有 .
【设计意图】考查对正数、负数概念的理解。
2.向东行进-50 m表示的实际意义是 .
【设计意图】会用正数、负数表示具有相反意义的量。
3.下列结论中正确的是( )
A.0既是正数,又是负数
B.O是最小的正数
C.0是最大的负数
D.0既不是正数,也不是负数
【设计意图】感受数0的特殊身份,并为学习有理数的分类做铺垫。
4.举一个能用正数、负数表示其中的量的生活实例,并解释其中相关数量的含义。
《正负数》教案 18
教学内容:
教材第2页例1、例2、例3,做一做及练习一第1-3题。
教学目标:
1.在熟悉的生活情境中初步认识负数,理解负数的意义,能正确的读写正数和负数,知道0既不是正数也不是负数。会用负数灵活地表示一些实际问题,能比较熟练地在数轴上找到正数、0和负数所对应的点。
2.借助熟悉的生活情境经历负数产生的过程,体会负数的意义。具有数形结合的意识,深刻体会数轴形成的过程。
3.激发学生对数的认识的兴趣,感受负数与生活的密切联系。
教学重点:
理解负数的意义,会用正数、负数表示生活中的相反的量。
教学难点:
理解相反意义的量和对0的认识。
教学准备:
课件
教学过程:
一、认识负数
(1)情境激疑
同学们,刚才一上课大家就做了一组相反的动作,想想看,是什么?
今天这节课咱们就从“相反”这个话题开始聊起:在咱们的生活中有很多的相反现象,比如太阳每天东升西落、车站上人们上车下车……
你能再举几个这样的例子吗?
顺着这位同学的思路继续往下聊,走进数学你又有什么发现?
1. 今年开学,四年级转入15名同学,五年级转出15名同学。
2.在剪刀、锤子、布活动中,男同学赢了3次,女同学输了1次。
3.李叔叔做生意,三月份亏了3000元,四月份赚了8000元。
怎样用数学的形式来表示这些意义相反的量呢?出示。
要求:简洁,是让别人也能一目了然。
汇报,可能有以下情况。
①直接表示 ( 简洁但不明了)
②用文字表示 (明了又不够简洁)
③用符号表示(简明、清楚,一目了然)
小结:现在人们就是用这种形式来区分意义相反的量的。
(2)认识正、负数。
你知道像这样的数,叫什么数吗?
举个例子来说?+3你会读吗?
像(—2)这样的数呢?
怎么读呢
师介绍:加号在这里叫做正号,减号叫
做负号。正数和负数表示意义相反的量。
练习:读出下面的数
-100、+6.8、-1.8、36
为了简便,+36可以写为36。也就是说通常情况下正号都可以省略。师板书。
得出:正数有无数个,负数也有无数个,用……来表示。
二、丰富新知,介绍负数历史。
同学们,我们今天从“相反”这个词聊起认识了负数这个新朋友。其实对于负数的认识,在咱们中国有着悠久的历史。古代的人,遇到这样问题的时候,也想出了不同的方法。你想知道吗?(课件演示或学习第4页你知道吗?)
听完介绍后你有什么感受?
接下来再让我们回到生活中,找一找在咱们身边又有哪些负数?(板书课题:负数)
三、生活中的应用
1.在温度计上认识负数
我的一位朋友喜爱出门旅游,这是他所定的几个备选城市,我帮他留意了一下气温情况,一起来看一下
(1)(多媒体播放城市天气预报:哈尔滨-15--3℃,北京-5-5℃;上海0-8℃;海口12-20℃)
得出:0℃的作用十分重要,它正好是零上温度和零下温度的分界点,换句话说也就是正数和负数的分界点,所以它既不是正数也不是负数。
(板书0,并用集合圈将正数、负数、0进行分类)
那你知道0度是怎么来的吗?
介绍:瑞典天文学家摄尔秋思,他把自然状态下的水刚开始结冰时的温度,规定为0℃。
(2)温度计。
生活中用什么工具来测量温度吗?(课件示:生活中常用的温度计)
介绍:摄氏度、华氏度,每格代表1℃。
2.电梯里的负数
叔叔上五楼开会,阿姨到地下二楼取车,应按哪两个键?(5、-2)
5和-2是以什么为分界点的呢?
3.海拔高度中的负数
世界峰珠穆朗玛峰比海平面高出8844.43米。如果把这个高度表示为+8844.43米,那么比海平面低155米的新疆吐鲁番盆地的高度应表示为( )米,海平面的高度为( )米。
练习
如果大雁向南飞30米记作+30,那么向北飞50米记作( )。
如果体重增加4千克用+4表示,那么-1.5表示( )。
4.数轴上的负数
出示例3
你能在一条直线上表示出他们运动后的情况吗?(强调以谁为分界点,以什么方向为正。两种说法)
指出:在一条直线上,确定了0(原点)、正方向和单位长度,就形成了一条数轴,刚才大家所说的就是数轴的形成过程。
现在你能在数轴上找到他们运动后的位置吗?
完成练习
(2)如果小华的位置是+11米说明她是向( )行( )米。(指出+11的位置,体会数轴是无限长的。)
(3)如果小刚先向东行5米,又向西行8米,这时小刚的位置为( )米。
(分层拓展)
5.运动场上的负数
刘翔在第十届世界田径锦标赛半决赛中110米栏的成绩是13秒42,当时赛场的风速是每秒-0.4米,你知道风速每秒-0.4米的意思吗?
四、小结
今天我们一起认识了负数,了解负数在生活中的一些作用,其实在我们的生活中负数还有更加广泛的用途等待着大家继续去了解。
初中数学正负数教案 19
教学目标
1、通过对零的意义的探讨,进一步理解正数和负数的概念,能利用正负数正确表示相反意义的量;
2、进一步体验正负数在生产生活中的广泛应用,提高解决实际问题的能力;
3、体验数学发展的一个重要原因是生活实际的需要;激发学生学习数学的兴趣。
重点深化对正负数概念的理解。
难点正确理解和表示指定方向变化的量,表示相反意义的量。
教学过程
一、创设情景
通过上节课的学习,我们知道在实际生产和生活中存在着两种不同意义的量,为了区分它们,我们用正数和负数来分别表示它们。
温度计上的-2,0,3分别表示是么意义?
二、自主探究
(1)一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值。
正数与负数的教案 20
一、教学目标
知识与技能:使学生了解正数与负数是从实际需要中产生的;
过程与方法:使学生理解正数与负数的概念,并会判断一个数是正数还是负数,初步会用正负数表示具有相反意义的量;
情感与态度:在负数概念的形成过程中,培养学生的观察、归纳与概括的能力
二、教学重点和难点
负数的引入和意义
三、教学过程
创设情景,生活实例引入,观察猜想,合作探究
(一)、从学生原有的认知结构提出问题
大家知道,数学与数是分不开的,它是一门研究数的学问现在我们一起来回忆一下,小学里已经学过哪些类型的数?
学生答后,教师指出:小学里学过的数可以分为三类:自然数(正整数)、分数和零(小数包括在分数之中),它们都是由于实际需要而产生的。
为了表示一个人、两只手、,我们用到整数1,2,
为了表示半小时、四元八角七分、,我们需用到分数1/2和小数4.87、
为了表示没有人、没有羊、我们要用到0.
但在实际生活中,还有许多量不能用上述所说的自然数,零或分数、小数表示。
(二)、师生共同研究形成正负数概念
某市某一天的最高温度是零上5℃,最低温度是零下5℃。要表示这两个温度,如果只用小学学过的数,都记作5℃,就不能把它们区别清楚。
它们是具有相反意义的两个量。
现实生活中,像这样的相反意义的量还有很多。
例如,珠穆朗玛峰高于海平面8848米,吐鲁番盆地低于海平面155 米,高于和低于其意义是相反的。
又如,某仓库昨天运进货物 吨,今天运出货物 吨,运进和运出,其意义是相反的。
同学们能举例子吗?
学生回答后,教师提出:怎样区别相反意义的量才好呢?
现在,数学中采用符号来区分,规定零上5℃记作+5℃(读作正5℃)或5℃,把零下5℃记作-5℃(读作负5℃)。这样,只要在小学里学过的数前面加上+或-号,就把两个相反意义的量筒明地表示出来了。
让学生用同样的方法表示出前面例子中具有相反意义的量:
高于海平面8848米,记作+8848米;低于海平面155米,记作-155米;
运进纲物 吨,记作+ ;运出货物 吨,记作- 。
教师讲解:什么叫做正数?什么叫做负数。
强调,数0既不是正数,也不是负数,它是正、负数的界限,表示基准的数,零不是表示没有,它表示一个实际存在的数量。并指出,正数,负数的+-的符号是表示性质相反的量,符号写在数字前面,这种符号叫做性质符号
(三)、运用举例 变式练习
例1 所有的正数组成正数集合,所有的负数组成负数集合把下列各数中的正数和负数分别填在表示正数集合和负数集合的圈里:
-11,4,8,+73,-2,7, , ,-8,12, - ;
正数集合 负数集合
此例由学生口答,教师板书,注意加上省略号,说明这是因为正(负)数集合中包含所有正(负)数,而我们这里只填了其中一部分。然后,指出不仅可以用圈表示集合,也可以用大括号表示集合
课堂练习
任意写出6个正数与6个负数,并分别把它们填入相应的大括号里:
正数集合:{ },
负数集合:{ }
四、课堂小结
由于实际生活中存着许多具有相反意义的量,因此产生了正数与负数正数是大于0的数,负数就是在正数前面加上-号的数0既不是正数,也不是负数,0可以表示没有,也可以表示一个实际存在的数量,如0℃
五、作业布置
1、北京一月份的日平均气温大约是零下3℃,用负数表示这个温度
2、在小学地理图册的世界地形图上,可以看到亚洲西部地中海旁有一个死海湖,图中标着-392,这表明死海的湖面与海平面相比的高度是怎样的?
3、在下列各数中,哪些是正数?哪些是负数?
-16,0,004,+ ,- , ,25,8,-3,6,-4,9651,-0,1.
4、如果-50元表示支出50元,那么+200元表示什么?
5、河道中的水位比正常水位低0.2米记作-0.2米,那么比正常水位温0.1米记作什?
6、如果自行车车条的长度比标准长度长2毫米记作+2毫米,那么比标准长度短3毫米记作么?
7、一物体可以左右移动,设向右为正,问:
(1)向左移动12米应记作什么?(2)记作8米表明什么?
《正数与负数》教案 21
学习目标:
1.了解负数产生的背景是从实际需要产生的;会判断一个数是正数还是负数。
2.会用正负数表示生活中常用的具有相反意义的量;知道整数、分数的分类。
3. 培养学生的数学应用意识,渗透对立统一的辩证思想。
教学重点:了解正数与负数是由实际需要产生的及会用正负数表示生活中常用的具有相反意义的量。
教学难点:了解正数与负数是由实际需要产生的。及会用正负数表示生活中常用的具有相反意义的量。
教学过程:
一。自主学习(导学部分)
1.在中国地形图上,可以看到有一座世界最高峰----珠穆朗玛峰,图上标有8848;还有一个吐鲁番盆地,图上标有-155 (单位:米)。这种数通常称为海拔高度,它是相对于海平面来说的。你知道海平面的高度通常用什么数表示吗?请说出图中所示的数8848和-155表示的实际意义。
2.你看过电视或听过广播中的天气预报吗?中国地形图上的温度阅读。(可让学生模拟预报)请大家来当小小气象员,记录温度计所示的气温25C,10C,零下10C,零下30C。
为书写方便,将测量气温写成25,10,―10,―30。
3.让学生回忆我们已经学了哪些数?它们是怎样产生和发展起来的?
在生活中为了表示物体的个数或事物的顺序,产生了数1,2,3,为了表示没有,引入了数0;有时分配、测量的结果不是整数,需要用分数(小数)表示。总之,数是为了满足生产和生活的需要而产生、发展起来的。
二。合作、探究、展示
1.正、负数的读法与写法:
号读作负,如117.3,读作负五, 号是不可以省略的。
+号读作正。如 ,读作正三分之二,+ 可以省略不写。
2.议一议
有位同学说一个数如果不是正数,必定就是负数。 你认为这句话对吗?为什么?
4.例1指出下列各数中的正数、负数:
+7,-9, ,-4.5,998, ,0
练一练:课本P13、2 3
5.相反意义的量:
在日常生活中,常会遇到这样一些量(事情)具有相反意义。向东和向西、零上和零下、收入和支出、升高和下降、买进和卖出都具有相反意义
你能举出几对日常生活中具有相反意义的量吗?
例2(1)如果向北8千米记作+8千米,那么向南走5千米记作什么?
(2)如果运进粮食3t记作+3,那么4t表示什么?
练习:课本P13/2 3
6. 统称为整数。
统称为分数。
三。巩固练习
1.比0大的数叫做__ ____; 比0小的数叫做___ ____;
2.既不是正数,又不是负数的数是__ ___.
3.数 3,-0.2,1,0, 中,负数有 个,正数有 个。
4.观察下面依次排列的一列数,它的排列有什么规律?请接着写出后面的3个数
(1)、1,-1,1,-1,1,-1,1,-1, , , ,
(2)、1,-2,3,-4,5,-6,7,-8, , , ,
5.小莉说:一个数,不是正数,必是负数。小明说:带有-号的数就是负数,带有+号的数就是正数 。你认为他们的说法正确吗?谈谈你的看法。
四。课堂小结
1、通过本节课学习,我们知道了一种新的数----负数。你是如何区分一个数是正数还是负数的?
五。布置作业
六。预习指导
《正数与负数》教案 22
1.1 正数和负数
〔教学目标〕
1、了解负数的产生是生活、生产的需要;
2、掌握正、负数的概念和表示方法,理解数0表示的量的意义;
3、理解具有相反意义的量的含义;
4、熟练地运用正、负数描述现实世界具有相反意义的量;
5、进一步体验正负数在生产生活实际中的广泛应用,提高解决实际问题的能力。
〔重点难点〕正确理解正、负数的概念,数0表示的量的意义和具有相反意义的量是重点,正确理解负数、数0表示的量的意义是难点。用正、负数表示生活中具有相反意义的量是重点,正、负数概念的综合运用是难点。
〔教学过程〕
一、负数的引入
我们知道,数产生于人们实际生产和生活的需要。[投影1~3:图1.1-1]人们由记数、排序,产生了数1,2,3;为了表示“没有”、“空位”引进了数0;测量和分配有时不能得到整数的结果,为此产生了分数和小数。
在生活、生产、科研中经常遇到数的表示与数的运算的问题。
[投影]1.北京冬季里某天的温度为-3~3℃,它的确切含义是什么?这一天北京的温差是多少?
2.有三个队参加的足球比赛中,红队胜黄队(4︰1),黄队胜蓝队(1︰0),蓝队胜红队(1︰0),三个队的净胜球分别是2,-2,0,如何确定排名顺序?
3.20xx年我国产量比上年增长1.8%,油菜籽产量比上年增长-2.7%,这里的增长-2.7%代表什么意思?
上面三个问题中,哪些数的形式与以前学习的数有区别?
数-3、-2、-2.7%与以前学习的数有区别。-3表示零下3摄氏度,-2是由2-4得到的,表示净输2个球,-2.7%表示减少2.7%,而3表示零上3摄氏度,2表示净赢2个球,2.7%表示增长2.7%。
像3、2、2.7%这样大于零的数叫做正数;像-3、-2、-2.7%这样在正数前面加上负号“-”的数叫做负数。根据需要,有时在正数前面也加上“+”(正)号,例如,+3、+2、+0.5、+1/3,?就是3、2、0.5、1/3,?。
这样,一个数由两部分组成,数前面的“+” “-”号叫做它的符号,后面的部分叫做这个数的绝对值。
请你指出数-3.2,5,-2/3的符号和绝对值。
二、对数“0”的重新认识
大于零的数叫做正数,在正数前面加上负号“-”的'数叫做负数,那么0是什么数呢? 数0既不是正数,也不是负数,它是正数和负数的分界。
我们知道,0表示没有,它仅仅表示没有吗?实际上它还可以表示一个确定的量。如今天气温是零度,是指一个确定的温度;海拔0表示海平面的平均高度。
0的意义已不仅仅是表示“没有”,它还可以表示一个确定的量。
三、用正负数表示相反意义的量
把0以外的数分为正数和负数,起源于表示两种相反意义的量。正数和负数在许多方面被广泛应用。在地形图上表示某地高度时,需要以海平面为基准,通常用正数表示高于海平面的某地的海拔高度,负数表示低于海平面的某地的高度。例如:珠穆朗玛峰的海拔高度为8844米,吐鲁番盆地的海拔高度为-155米。又如记录账目时,通常用正数表示收入款额,负数表示支出款额。
请大家看课本第3面的图1.1-2、1.1-3。
你能解释上面图中正数和负数的含义吗?
图1.1-2中的4600表示A地高于海平面4600米,-100表示B地低于海平面100米;图1.1-3中的2300表示存入2300元,-1800表示支出1800元。
你能再举一些用正负数表示数量的实际例子吗?
通常用正数表示汽车向东行驶的路程,用负数表示汽车向西行驶的路程;用正数表示水位升高的高度,用负数表示水位下降的高度;用正数表示买进东西的数量,用负数表示卖出东西的数量,等等。
四、巩固练习
五、实际问题
[投影]例(1)一个月内,小明体重增加2公斤,小华体重减少1公斤,小强体重无变化,写出他们这个月的体重增长值;
(2)20xx年下列国家的商品进出口总额比上年的变化情况是:
美国减少6.4%,德国增长1.3%,
法国减少2.4%,英国减少3.5%,
意大利增长0.2%,中国增长7.5%。
写出这些国家20xx年进出口总额的增长率。
分析:首先我们来弄清楚增长-1是什么意思?增长-6.4%是什么意思?
增长-1表示减少1;增长-6.4%表示减少6.4%。
解:(1)这个月小明体重增长2公斤,小华体重增长-1公斤,小强体重增长0公斤。
(2)六个国家20xx年商品进出口总额的增长率:
美国 -6.4%,德国 1.3%,
法国 -2.4%,英国 -3.5%,
意大利 0.2%,中国 7.5%。
注意:在同一个问题中,分别用正数与负数表示的量具有相反的意义。[投影3]例2 “牛牛”饮料公司的一种瓶装饮料外包装上有“500±30(mL)”字样,请问“500±30(mL)”是什么含义?质检局对该产品抽查5瓶,容量分别为503mL,511mL,489mL,473mL,527mL ,问抽查产品的容量是否合格?
分析:“+30”是什么意思?“-30”是什么意思?
解:“500±30(mL)”表示实际容量比500mL最多多30mL,最少少30mL,即在470~530之间。 抽查产品的容量都在470~530之间,所以都合格。
六、巩固练习
[投影]补充题:某药品的说明书上标明保存温度是(20±2)℃,由此可知在 ℃~ ℃范围内保存才合适。
七、课堂小结
1、到目前为止,我们学习的数有正数、负数和零;零不仅仅表示没有,它还表示确定的量。
2、正数和负数起源于表示两种相反意义的量。
3、正、负数在生产、生活和科研中有着广泛的应用。
初中数学《正数和负数》教案 23
【教学目标】
了解负数产生的背景是从实际需要产生的;会判断一个数是正数还是负数;会用正负数表示生活中常用的具有相反意义的量;培养学生的数学应用意识。
【内容简析】
本节是小学所学算术数之后数的范围的第一次扩充,是算术数到有理数的衔接与过渡,并且是以后学习数轴、相反数、绝对值以及有理数运算的基础。本节的重点是通过熟悉的实例引入负数的概念,使学生明确数学知识来源于实践又服务于实践。能正确识别负数、用正负数表示具有相反意义的量是本节的难点。教学中要特别强调“0”的特殊身份,明确“0”既不是正数,也不是负数,它是正、负数的分界点。教学中应多结合实例加深对负数的认识。
【流程设计】
一、情景创设
1.引导学生回忆小学学过的数,并回答小学学过的最小的数是谁?是否存在比零小的数?在小学遇到0-2、3-5这类题会算吗?
2.你看过电视或听过广播中的天气预报吗?(可让学生模拟预报)请大家来当小小气象员,记录温度计所示的气温25°c,10°c,零下10°c,零下30°c。
为书写方便,将测量气温写成25,10,-10,-30,再如中国地形图上的海拔标注数据8848.13,-155之类的数是什么意思?怎样用数学来区分高出警戒水位1米与低于警戒水位1米呢?
二、新知探索
1.教师由以上实例归纳出正数与负数的描述性概念。
像25,10,8848,大于0的'数叫正数;像-10,-30,-155这样在正数前面加上“-”(负号)的数叫做负数;0既不是正数也不是负数。
给出板书:
正数——大于0的数
负数——正数前面加“-”号的数(小于0的数)
0——既不是正数,也不是负数
说明:①负数前面的“-”号的读法,“-5”应读作“负5”;
②正数前面有时也可加上“+”(正)号,如将“5”写成“+5”;
③“0”是第一个自然数,可看作正数与负数的分界点,“0”的内涵很丰富,它不仅仅表示没有,在实际意义中,“0”是用来表示基准的数。
小资料:世界各国对负数的认识和接受也有一个过程。如1484年法国数学家曾得到二次方程的一个负根,但他不承认它,说负数是荒谬的数。1545年卡尔丹承认方程中可以有负根,但认为它是“假数”。直到1831年还有数学家认为负数是“虚构”的,他还特意举了一个“特例”来说明他的观点:“父亲56岁,他儿子29岁,问什么时候父亲的岁数将是儿子的两倍?”,通过列方程解得x=-2,他认为这个结果是荒唐的,他不懂得x=-2正是说明两年前父亲的岁数将是儿子的两倍。
三、范例共做
例1:所有正数组成正数集合,所有负数组成负数集合。把下列各数中的正数和负数分别填在表示正数与负数集合的圈里:
-11,4.8,+7.3,0,-2.7,-8.12
正数集合负数集合
例2:自己任意写出六个正数与六个负数分别填入相应的大括号里:
正数集合{}
负数集合{}
注:由于正数和负数都有无数个,在表示正数和负数的集合中常加上省略号。
例3:规定向前走为正,两个学生一组做游戏,如
甲:向前走2步乙:2
甲:向后走3步乙:-3
甲:-4乙:向后走4步
甲:0乙:原地不动
注:通过设计类似的游戏活动使学生加深对负数的认识。
四、巩固练习
1.-10表示支出10元,那么+50表示
如果零上5度记作5°c,那么零下2度记作
如果上升10m记作10m,那么-3m表示;
太平洋中的马里亚纳海沟深达11034米,可记作海拔米(即低于海平面11034米)。
比海平面高50m的地方,它的高度记作海拨;
比海平面低30m的地方,它的高度记作海拨;
2.下面说法正确的是()
a.正数都带有“+”号
b.不带“+”号的数都是负数
c.小学数学中学过的数都可以看作是正数
d.0既不是正数也不是负数
3.数学测验班平均分80分,小华85分,高出平均分5分记作+5,小松78分,记作。
4.某物体向右运动为正,那么-2m表示,0表示。
5.一种零件的内径尺寸在图纸上是10±0.05(单位mm),表示这种零件的标准尺寸是10mm,加工要求最大不超过标准尺寸,最小不超过标准尺寸。
五、小结提高
1.正数和负数表示的是一对相反意义的量,哪种意义为正是可以任意规定的。如果把一种意义规定为正,则相反意义的量规定为负。常将“前进、上升、收入、零上温度”等规定为正,而把“后退、下降、支出、零下温度”等规定为负;
2.正数是比零大的数,正数前面加“-”号的数叫负数。所有负数小于零,零既不是正数也不是负数。
六、课后思考
1.-a一定是负数吗?
2.在月球表面,“白天”的温度可达127°c,太阳落下后的“月夜”气温竟下降到-183°c,请问在月球上温差是多少度?
七年级数学教案正数与负数 24
正数与负数
教学目标
1.使学生理解正数与负数的概念,并会判断一个给定的数是正数还是负数;
2. 会初步应用正负数表示具有相反意义的量;
3.使学生初步了解有理数的意义,并能将给出的有理数进行分类;
4.培养学生逐步树立分类讨论的思想;
5. 通过本节课的 教学 ,渗透对立统一的辩证思想。
教学建议
一、重点、难点分析
本课的重点是了解正数与负数是由实际需要产生的以及有理数包括哪些数。难点是学习负数的必要性及有理数的分类。关键是要能准确地举出具有相反意义的量的典型例子以及要明确有理数分类的标准。
正、负数的引入,有各种不同的方法。教材是由学生熟知的两个实例:温度与海拔高度引入的。比0℃高5摄氏度记作5℃,比0 ℃低5摄氏度,记作-5℃;比海平面高8848米,记作8848米,比海平面低155米记作-155米。由这两个实例很自然地,把大于0的数叫做正数,把加“-”号的数叫做负数;0既不是正数也不是负数,是一个中性数,表示度量的“基准”。这样引入正、负数,不仅有利于学生正确使用正、负数表示具有相反意义的量,而且还将帮助学生理解有理数的大小性质。把负数理解为小于0的数。教材中,没有出现“具有相反意义的量”的概念。这是有意回避或淡化这个概念。目的是,从正、负数引入一开始就能较深刻的揭示正、负数和零的性质,帮助学生正确理解正、负数的概念。
关于有理数的分类要明确的是:分类标准不同,分类结果也不同,分类结果应是不重不漏,即每一个数必须属于某一类,又不能同时属于不同的两类。
二、知识结构
1.正数、负数和零的概念
正数
负数
零
象1、2.5、 、48等大于零的数叫正数
象-1、-2.5, ,-48等小于零的数叫负数
0叫做零,0既不是正数也不是负数
2.有理数的分类
三、教法建议
这节课是在 小学 里学过的数的基础上,从表示具有相反意义的量引进负数的.从内容上讲,负数比非负数要抽象、难理解.因此在 教学 方法和 教学 语言的选择上,尽可能注意中 小学 的衔接,既不违反科学性,又符合可接受性原则。例如,在讲解有理数的概念时,让学生清楚地认识有理数与算术数的根本区别,有理数是由两部分组成:符号部分和数字部分(即算术数).这样,在理解算术数和负数的基础上,对有理数的'概念的理解就简便多了.
为了使学生掌握必要的数学思想和方法,在明确有理数的分类时,可以有意识地渗透分类讨论的思想方法,理解分类的标准、分类的结果,以及它们的相互联系。通过正数、负数都统一于有理数,可以将对立统一的辩证思想的逐步树立渗透到日常教学中。
四、正数与负数概念的理解
1?对于正数和负数的概念,不能简单的理解为:带“+”号的数是正数,带“-”号的数是负数。例如: 一定是负数吗?答案是不一定。因为字母 可以表示任意的数,若 表示正数时, 是负数;当 表示0时, 就在0的前面加一个负号,仍是0,0不分正负;当 表示负数时, 就不是负数了,它是一个正数,这些下节将进一步研究。
2?引入负数后,数的范围扩大为有理数,奇数和偶数的外延也由自然数扩大为整数,整数也可以分为奇数和偶数两类,能被2整除的数是偶数,如…-6,-4,-2,0,2,4,6…,不能被2整除的数是奇数,如…-5,-4,-2,1,3,5…
3?到现在为止,我们学过的数细分有五类:正整数、正分数、0、负整数、负分数,但研究问题时,通常把有理数分为三类:正数、0、负数,进行讨论。
4?通常把正数和0统称为非负数,负数和0统称为非正数,正整数和0称为非负整数;负整数和0统称为非正整数。
五、有理数的分类
整数和分数统称为有理数。
1)正整数、零、负整数统称为整数;正分数、负分数统称为分数。这样有理数按整数、分数的关系分类为:
2)整数也可以看作分母为1的分数,但为了研究方便,本章中分数是指不包括整数的分数。因此,有理数按正数、负数、0的关系还可分类为:
3)注意概念中所用“统称”二字,它与说“整数和分数是有理数”的意思不大一样。前者回避了分数是否包括整数的问题,即使把整数包括在分数范围内,说“统称”还是不错,而用后一种说法就欠妥了。
4)分数和小数的区别:
分数(既约分数)都可表示成小数,但不是所有的小数都能表示成分数的。如圆周率就不能表示成分数。
5)到目前为止,所学过的数(除外)都是有理数。
七年级数学正数和负数教案 25
教案背景
初中生爱玩、好动,处于形象思维向抽象思维过渡的阶段,过分抽象的问题,学生往往感到乏味而百思不得其解。而多媒体具有形象、直观的特点,利用它为学生构建思维想象的平台,营造良好的学习氛围,充分调动学生学习的积极性、自觉性,用以达到以快乐的形式去追求知识的目的;新课程标准要求:课堂教学要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动,内容的呈现应采用不同的表达方式,以满足多样化的学习需求。教学过程中。要加强学生的动手实践、自主探索与合作交流的意识,并着力培养学生解决实际问题的能力。
1.1《正数和负数》教学设计方案
(第1课时)
人教版九年级数学上册
山东省滨州市滨城区滨北街道办事处北城中学 耿新华
邮编:256651 联系电话:15865403584
教材分析:
一、教材所处的地位及作用:“1.1正数和负数”一节,是人教版七年级上册第一章第一节的内容,本节内容主要是学习正数、负数和零的定义、联系。是本章有理数学习的基础。
二、教学目标
知识与技能:借助生活中的实例理解有理数的意义,会判断一个数是正数还是负数,能应用正负数表示生活中具有相反意义的量。
过程与方法:1.体会负数引入的必要性,感受有理数应用的广泛性,并领悟数学知识来源于生活,体会数学知识与现实世界的联系。
2.能结合具体情境出现并提出数学问题,并解释结果的合理性。
情感态度与价值观:乐于接触社会环境中的数学信息,愿意谈论数学话题,在数学活动中发挥积极作用。
三、教学重、难点
重点:体会负数引入的必要性和有理数应用的广泛性, 能应用正负数表示生活中的具有相反的意义的量。
难点:能应用正负数表示生活中的具有相反的意义的量,养成把数学应用于生活实际问题的习惯。
教学方法:采用“现象──问题──目标”的教学方法,力求体现“主体参与、自主探索、合作交流、指导引探”的教学理念
教学过程
教师在轻松欢快的音乐中演示第一节首图片为主体的多媒体课件。
环节 教师活动 学生活动 设计意图
创设情境导入新课
自主学习
师生互动
合作探究
达标检测
学习总结
教师出示图片说明自然数的产生、分数的产生。接着
出示问题
问题1 天气预报:滨州市冬季某天的温度为-3~3℃,它的确切含义是什么?这一天我市的温差是多少?
问题2 2.2010年我国花生产量比去年增长1.8%油菜产量比去年增长-2.7%,这里的增长-2.7%代表什么意思?
两个问题中的-3、-2.7%是我们以前没有学过的新数,这说明随着生活和劳动的发展我们以前学过的数,已经不够用了,需要引进新的数。来服务我们的生活。从而导入新课
一、出示本节课的学习目标
1、通过生活中实例认识到引入负数的必要性。
2、知道什么是负数,零,正数。
3、会判断一个数是正数?还是负数?
4、能用正数、负数表示实际生活中具有相反意义的量
二、出示本节课的自学提纲
1、.知识点1:正数、负数的概念---------阅读教材第2页,像3、2、0.5、1.8%这样比0大的数叫 ,根据需要,有时在正数前面加上“+”,如+5, , , ,…。正数前面的“+”,一般省略不写:而像-3、-2、-3.5%这样在正数前面加上“—”号的数叫 。如-6, ,…。“-6”读作 。
2、知识点2:对“0”的理解--------阅读教材第2 页
0既不是 数,也不是 数,它是正数与负数的分水岭。它的意义很丰富,它既可以表示“没有”,也可以表示其它特定的意义。
3、知识点3;用正数和负数表示具有相反意义的量--------阅读教材第3页
相反意义的量必须具有两个要素:一是它们的意义 ;二是它们都具有数量,而且一定是 量。
一、指导学生在本组内交流结果,收集每组不会的问题,试着让其他组解决。
二、教师收集全班不会的问题,帮着解决。
做一做:(出示幻灯片)
初中数学《正数和负数》教案 26
教学目标
一、知识与技能
能判断一个数是正数还是负数,能用正数或负数表示生活中具有相反意义的量。
二、过程与方法
借助生活中的实例理解有理数的意义,体会负数引入的必要性和有理数应用的广泛性。
三、情感态度与价值观
培养学生积极思考,合作交流的意识和能力。
教学重、难点与关键
1.重点:正确理解负数的意义,掌握判断一个数是正数还是负数的方法。
2.难点:正确理解负数的概念。
3.关键:创设情境,充分利用学生身边熟悉的事物,加深对负数意义的理解。
教具准备
投影仪。
教学过程
课堂引入
我们知道,数是人们在实际生活和生活需要中产生,并不断扩充的。人们由记数、排序、产生数1,2,3,为了表示没有物体、空位引进了数0,测量和分配有时不能得到整数的结果,为此产生了分数和小数。
在生活、生产、科研中经常遇到数的表示与数的运算的问题,例如课本第2页至第3页中提到的四个问题,这里出现的新数:-3,-2,-2.7%在前面的实际问题中它们分别表示:零下3摄氏度,净输2球,减少2.7%。
讲授新课
(1)、像-3,-2,-2.7%这样的数(即在以前学过的0以外的数前面加上负号-的数)叫做负数。而3,2,+2.7%在问题中分别表示零上3摄氏度,净胜2球,增长2.7%,它们与负数具有相反的意义,我们把这样的数(即以前学过的0以外的数)叫做正数,有时在正数前面也加上+(正)号,例如,+3,+2,+0.5,+,就是3,2,0.5,一个数前面的+、-号叫做它的符号,这种符号叫做性质符号。
(2)、中国古代用算筹(表示数的工具)进行计算,红色算筹表示正数,黑色算筹表示负数。
(3)、数0既不是正数,也不是负数,但0是正数与负数的分界数。
(4)、0可以表示没有,还可以表示一个确定的量,如今天气温是0℃,是指一个确定的`温度;海拔0表示海平面的平均高度。
用正负数表示具有相反意义的量
(5)、把0以外的数分为正数和负数,起源于表示两种相反意义的量。正数和负数在许多方面被广泛地应用。在地形图上表示某地高度时,需要以海平面为基准,通常用正数表示高于海平面的某地的海拔高度,负数表示低于海平面的某地的海拔高度。例如:珠穆朗玛峰的海拔高度为8844m,吐鲁番盆地的海拔高度为-155m.记录账目时,通常用正数表示收入款额,负数表示支出款额。
(6)、请学生解释课本中图1.1-2,图1.1-3中的正数和负数的含义。
(7)、你能再举一些用正负数表示数量的实际例子吗?
(8)、例如,通常用正数表示汽车向东行驶的路程,用负数表示汽车向西行驶的路程;用正数表示水位升高的高度,用负数表示水位下降的高度;用正数表示买进东西的数量,用负数表示卖出东西的数量。
巩固练习
课本第3页,练习1、2、3、4题。
课堂小结
为了表示现实生活中的具有相反意义的量,我们引进了负数。正数就是我们过去学过的数(除0外),在正数前放上-号,就是负数,但不能说:带正号的数是正数,带负号的数是负数,在一个数前面添上负号,它表示的是原数意义相反的数。如果原数是一个负数,那么前面放上-号后所表示的数反而是正数了,另外应注意0既不是正数,也不是负数。
作业布置
课本第5页习题1.1复习巩固第1、2、3题。
版权声明: 本站仅提供信息存储空间服务,旨在传递更多信息,不拥有所有权,不承担相关法律责任,不代表本网赞同其观点和对其真实性负责。如因作品内容、版权和其它问题需要同本站联系的,一经查实,本站将立刻删除。