因数和倍数教学反思优秀10篇2-3-45
身为一名到岗不久的老师,我们要有一流的教学能力,借助教学反思可以快速提升我们的教学能力,优秀的教学反思都具备一些什么特点呢?书痴者文必工,艺痴者技必良,以下是美丽的编辑帮大家分享的因数和倍数教学反思优秀10篇,欢迎参考,希望对大家有一些参考价值。
因数和倍数教学反思博客 篇一
1、出示12个小正方形。
师:数一数,一共有几个小正方形?如果老师请你把这12个同样的小正方形拼成一个长方形,会拼吗?能不能用一条简单的乘法算式表达出来?
2、指名学生列式,提问其他学生:“你知道他是怎么摆的吗?”要求学生说出每排摆几个,摆了几排。
3、根据学生的回答,适时贴出各种不同摆法:
12×1=12
6×2=12
4×3=12
4、12个同样大小的正方形拼成长方形,能列出三道不同的乘法算式,千万别小看这些乘法算式,咱们今天研究的内容就在这里。以4×3=12为例,12是4的倍数,那12也是(3的倍数),4是12的因数,那3也是(12的因数)。同学们很有迁移的能力,这就是我们今天要研究的倍数和因数。(板书课题)
5、根据另外两道乘法算式,说说谁是谁的倍数,谁是谁的因数。
6、刚才在听的时候发现12×1=12说因数和倍数时有两句特别拗口,是哪两句?
说明:虽然是拗口了点,不过数学上还真是这么回事。12的确是12的因数,12也确实是12的倍数。为了方便,我们在研究倍数和因数时所说的数一般指不是0的自然数。
7、说一说
(1)根据72÷8=9,说一说哪一个数是哪一个数的倍数,哪一个数是哪一个数的因数。
(2)从下面的数中任选两个数,说一说哪一个数是哪一个数的倍数,哪一个数是哪一个数的因数。
3、5、18、20、36
陶老师从摆小正方形入手,提出“每排摆了几个?”“摆了几排?”这两个问题,引导学生用乘法算式把摆法表示出来,再让学生猜一猜“可能是怎么摆的”,学生充分经历了“由形到数、再由数到形”的过程,既为倍数和因数概念的提出积累了素材,又初步感知倍数和因数的关系,为正确理解概念提供了帮助。接着结合具体的乘法算式介绍倍数和因数,并让学生根据另外两道乘法算式说说谁是谁的倍数,谁是谁的因数。再通过除法算式让学生说说谁是谁的倍数,谁是谁的因数。最后让学生从五个数中任选两个数说说谁是谁的倍数,谁是谁的因数,这样层层深入,学生对倍数和因数的感受更加深刻。<
因数和倍数教学反思 篇二
本单元涉及到的因数、倍数、质数、合数以及第四单元中出现的最大公因数、最小公倍数都属于初等数论的基本内容。是学生通过四年多数学学习,已经掌握了大量的整数知识,包括整数的认识、整数四则运算的基础上进一步探索整数的性质。
在教学中,通过教授学生认识“因数和倍数”,并掌握他们的特征:因数和倍数不能单独存在,并通过观察比较几个数的因数(或倍数),知道几个数公有的因数(或倍数)叫做他们的公因数(或公倍数),且能够在几个数的因数(或倍数还)中找出他们的公因数(或公倍数)。
接下来学习“2、3、5的倍数的特征”。发现2、5、3倍数的规律和特点。在此之前还要向学生教学什么是“奇数”什么是“偶数”,只有掌握了奇数与偶数,学习“2、5的倍数”的特征就会简单容易得多。而“3的倍数”的特征就是引导学生把各个数位上的数相加,的到的数如果是3的倍数的话,说明这个数就是3的倍数。
那么,又如何让学生学习掌握质数与合数呢?在教学中,我主要是让学生把1~
20的因数分别写出来,并按照奇数为一列偶数为一列来让学生进行观察比较,然后归类整理:只有1个因数的有哪些数?有两个因数的有哪些数?有3个以上因数的有哪些数?学生分好之后,教师明确:向这样只有2个因数的数叫做质数,有2个以上因数个数的数叫合数,1既不是质数也不是合数。那么自然数按因数的个数来分就可以分为“1、质数、合数”三大类。
为了让学生巩固质数与合数,再让学生找出1~100以内的所有质数:先划掉除了2以外所有2的倍数,再划掉3的`倍数、划掉5的倍数、最后划掉7的倍数,所剩下的数就是质数,并且让学生数出、记住100以内有25个质数。也可以用同样的方法去判定100以外的数是质数还是合数。
最后,再学生讲解介绍“分解质因数”,知道用短除法来分解质因数。然后对整个单元所学的知识进行梳理、归类,让学生熟记一些特殊的规律与数字,多做一些练习,加强的后进生的关注和辅导。
因数和倍数教学反思 篇三
一、教材与知识点的对比与区别。
1、对比新版教材知识设置与传统教材的区别。
有关数论的这部分知识是传统教学内容,但教材在传承以往优秀做法的同时也进行了较大幅度的改动。无论是从宏观方面——内容的划分,还是从微观方面——具体内容的设计上都独具匠心。“因数与倍数”的认识与原教材有以下两方面的区别:
(1)新课标教材不再提“整除”的概念,也不再是从除法算式的观察中引入本单元的学习,而是反其道而行之,通过乘法算式来导入新知。
(2)“约数”一词被“因数”所取代。
这样的变化原因何在?教师必须要认真研读教材,深入了解编者意图,才能够正确、灵活驾驭教材。因此,我通过学习教参了解到以下信息:
学生的原有知识基础是在已经能够区分整除与余数除法,对整除的含义有比较清楚的认识,不出现整除的定义并不会对学生理解其他概念产生任何影响。因此,本教材中删去了“整除”的数学化定义。
2、相似概念的对比。
(1)彼“因数”非此“因数”。
在同一个乘法算式中,两者都是指乘号两边的整数,但前者是相对于“积”而言的,与“乘数”同义,可以是小数。而后者是相对于“倍数”而言的,与以前所说的“约数”同义,说“X是X的因数”时,两者都只能是整数。
(2)“倍数”与“倍”的区别。
“倍”的概念比“倍数”要广。我们可以说“1.5是0.3的5倍”,但不能说”1.5是0.3的倍数”。我们在求一个数的倍数时,运用的方法与“求一个数的几倍是多少”是相同的,只是这里的“几倍”都是指整数倍。
二、教法的运用实践
1、“因数与倍数”概念的数的应用范围的规定直接运用讲述法。对与本知识点的概念是人为规定的一个范围,因此,对于学生和第一接触的印象是没有什么可以探究和探索的要求,而且给学生一个直观的感受。“因数与倍数”的运用范围就是在非0自然数的范畴之内,与小数无关,与分数无关,与负数无关(虽没学,但有小部分学生了解)。同时强调——非0——因为0乘任何数得0,0除以任何数得0。研究它的因数与倍数是没有意义。我得到的经验就是对于数学当中规定性的概念用直接讲述法,让学生清晰明确。因此,用直接导入法,先复习自然数的概念,再写出乘法算式3x4=12,说明在这个算式中,3和4是12的因数,12是3和4的倍数。
2、在进行延续性教学中,可以让学生探究怎么样找一个数的因数和倍数,在板书要讲究一个格式与对称性,这样在对学生发现倍数与因数个数的有限与无限的对比,再就是发现一个数的因数的最小因数是1,最大因数是它本身。一个数的倍数的最小的倍数是它本身,而没有最大的倍数。这些都是上课时应该要注意的细节,这对于学生良好的学习惯的培养也是很重要的。
因数和倍数的教学反思 篇四
本节课是在学生已经学习了一定的整数知识的基础上进行教学的。
课堂中,我首先让学生理解分类标准,明确因数和倍数的含义。在例1教学中,首先根据不同的除法算式让学生进行分类,同时思考其标准依据是什么。通过学生的独立思考和小组交流学生得出:
第一种是分为两类:
一类是商是整数,另一类是商是小数;
第二种是分为三类:一类商是整数,一类是小数,另一类是循环小数。究竟怎样分类让学生在争论与交流中达成一致答案分为两类。然后根据第一类情况得出倍数和因数的含义,特别强调的是对于因数和倍数的含义要符合两个条件:
一是必须在整数除法中,
二是必须商是整数而没有余数。具备了这两个条件才能说被除数是除数的倍数,除数是被除数的因数。
其次,厘清概念倍数和几倍,注重强调倍数和因数的相互依存性。在教学中可以直接告诉学生因数和倍数都不能单独存在,不能说2是因数,12是倍数,而必须说谁是谁的'因数,谁是谁的倍数。
对于倍数与几倍的区别:倍数必须是在整数除法中进行研究,而几倍既可以在整数范围内,也可以在小数范围内进行研究,它的研究范围较之倍数范围大一些。
本节课的不足之处:
1、练习设计容量少了一些,导致课堂有剩余时间。
2、对因数和倍数的含义还应该进行归纳总结上升到用字母来表示。
因数和倍数教学反思 篇五
因数和倍数是五年级下册第二单元的教学内容,由于知识较为抽象,学生不易理解,因此我在教学时做到了以下几点:
(1)密切联系生活中的数学,帮助学生理解概念间的关系。
今天在教学前,我让学生学说话,就是培养学生对语言的概括能力和对事物间关系的理解能力。于是我利用课前谈话让学生在找找生活中的相互依存关系,课中迁移到数学中的倍数和因数,这样设计自然又贴切,既让学生感受到了数学与生活的联系,又帮助学生理解了倍数因数之间的相互依存关系,从而使学生更深一步的认识倍数与因数的关系,
(2)改动呈现倍数和因数概念的方式。我改变了例题,用杯子翻动的次数与杯口朝上的次数之间的关系,列出乘法算式,初步感知倍数关系的`存在,从而引出倍数和因数的概念,并为下面学习如何找一个数的倍数奠定了良好的基础。这样不仅沟通了乘法和除法的关系,也让学生很容易感悟到不管是根据乘法还是除法算式都可以找到因数和倍数。
(3)根据学生的实际情况,教学找一个数的因数的方法,虽然学生不能有序地找出来,但是基本能全部找到,再此基础上让体会有序找一个数因数的办法学生容易接受,这样的设计由易到难,由浅入深,我觉得能起到巩固新知,发展思维的效果。
(4)设计有趣游戏活动,扩大学生思维的空间,培养学生发散思维的能力。譬如“找朋友”游戏,答案不唯一,学生思考问题的空间很大,培养了学生的发散思维能力。我手里拿了5、17、38几张数字卡片,让学生判断自己的学号数是哪些数的倍数,是哪些数的因数,如果学生的学号数是老师出示卡片的倍数或因数就可以站起来。最后问能不能想个办法让所有的学生都站起来。出示地卡片应该是几,找的朋友应该是倍数还是因数?学生面对问题积极思考,享受了数学思维的快乐。
因数和倍数的教学反思 篇六
因数和倍数是苏教版五年级下册第三单元的内容。这一内容与原来教材比有了很大的不同,老教材中是先建立整除的概念,在此基础上认识因数倍数。而教材是通过用12个小正方形拼长方形并写乘法算式来引入因数和倍数。我在教学时做了一些下的改动,例题从12个相同的正方形拼长方形开始教学,学生对这个活动已经很熟悉,几乎人人都知道有不同的拼法,都能顺利地拼出三种不同的长方形。因此,我要求不用12个正方形拼,而是在脑子里“想像拼”,不能想象的就在本子上“画拼”,“拼”好后,我也要求只用一个乘法算式表示你的拼法,这样不仅节省了不少时间,更主要的是我觉得这样的操作活动,虽然看起来不热闹,但学生的'学习兴趣被激发了、思维被调动起来了,主动参与到了知识的学习中去了。
能不重复、不遗漏,有序地找出一个数的因数,是本课的教学难点。在教学中,我是这样设计的:在根据1×12=12,2×6=12,3×4=12三个乘法算式说出了谁是谁的因数、谁是谁的倍数后,教师紧接着提问:12的因数有哪些?学生看着黑板上的算式很快可找出12的因数,接着再提问:你是怎么看出来的?根据一个乘法算式可以得到12的几个因数?在学生回答之后,我接着请同学们用刚才的方法自己找一找36的因数有哪些。在汇报时,重点解决如何有序、不重复、不遗漏地找出一个数的因数。虽然这样的教学设计,看起来学生的主动探索过程好像削弱了好多,但根据试上这课时的情况看,这样的设计比直接让学生自主探索36的因数有哪些学习效果要好一些。直接探索36的因数有哪些,放得太开,学生无从下手,暴露出了许多问题,有的不知道该如何找因数,有的没有找全,而学生在教师的引导下,发现了找一个数因数的方法后接着去找36的因数,那么他所关注的是如何有序地找出一个数的因数,这样的思考更有针对性,目标也更明确,对知识的掌握也能做得更好。
因数和倍数教学反思 篇七
《因数和倍数》这部分资料学生初次接触,对于学生来说是比较难掌握的资料。首先是名称比较抽象,在现实生活中又不经常接触,对这样的概念教学,要想让学生真正理解、掌握、决定,需要一个长期的消化理解的过程。
同时这部分资料是比较重要的,为五年级的最小公倍数和最大公因数的学习奠定了基础。
本节可充分发挥学生的主体性,让每个学生都能参加到数学知识的学习中去,调动学生学习的兴趣和主动性。本节课主要从以下几个方面进行教学的。
一:动手操作探究方法。
我创设有效的数学学习情境,数形结合,变抽象为直观。首先让学生动手操作把12个小正方形摆成不一样的长方形,再让学生写出不一样的乘法算式,借助乘法算式引出因数和倍数的好处。这样在学生已有的知识基础上,从动手操作,直观感知,变抽象为具体。
二、倍数教学,发现特点。
利用乘法算式,让学生找出3的倍数,那里让学生理解:
(1)3的倍数就应是3与一个数相乘的积。
(2)找3的倍数是要有必须的顺序,依次用1、2、3……与3相乘。有了找3倍数的方法,在上学生找出2和5的倍数。这样即巩固对例题的理解,同时也为接下来的讨论倍数的特点奠定基础。最后让学生透过讨论发现:
(1)一个数的倍数个数是无限的(要用省略号)。
(2)一个数的最小倍数是本身,没有最大的倍数。
三、因数教学,发现特点。
找一个数因数的方法是本节课的难点。找一个数的因数的方法和倍数相似,大部分学生都用乘法 www.kaoyantv.com 高考家长帮…算式寻找一个数的因数,那里教师能够透过几到有序排列的。除法算式启发学生进一步理解。强调有序(从小到大),不重复、不遗漏。随后让学生找出15、16的因数有那些。最后透过比较讨论让学生得出因数的特点:
(1)一个数因数的个数是有限的。
(2)一个数最小的因数是1,最大的因数是本身。(让学生明白所有的数都有因数1)。
四、练习反馈状况
从学生的作业状况来看,大部分学生掌握的还是不错的,有部分基础差的学生,有如下几点错误出现:
1、倍数没有加省略号。
2、分不清倍数和因数,倍数也加省略号,因数也加省略号。
3、因数有遗漏的状况。从以上状况来看,在今后的教学中要多关注基础比较差的学生,注意补差工作;同时要注意教学中细节的处理。
因数和倍数的教学反思 篇八
通过今天的学习,你有什么收获?
课后作业 :课后自已或与同学合作制作一个含有因数和倍数知识的转盘。
教后反思:
40分钟的时间一闪而过,轻松愉悦的课堂气氛,让学生的学习情绪空前高涨,学生的学习热情,学习过程中数学思维的提升,都在这短短的时间内让我感觉无尽的惊喜。
课堂导入,亲切,有效,让学生先在脑海中留下“关系”这种印象,学生通过自己阅读明白谁是谁的因数,谁是谁的倍数,然后通过试一试、练习、特别是(8是倍数,4是因数。…… ( ))的辨析,让学生明白:在说倍数(或因数)时,必须说明谁是谁的。倍数(或因数)。不能单独说谁是倍数(或因数)。
因数和倍数不能单独存在。
通过寻找一个数的因数,和一个数的倍数,让学生通过多个实例找到规律。
在教学中由于过分依赖课件,致使有的环节没有深入,没有给学生时间进行
因数和倍数教学反思 篇九
新教材在引入倍数和因数概念时与以往的老教材有所不同,比如在认识“因数、倍数”时,不再运用整除的概念为基础,引出因数和倍数,而是直接从乘法算式引出因数和倍数的概念,目的是减去“整除”的数学化定义,降低学生的认知难度,虽然课本没出现“整除”一词,但本质上仍是以整除为基础。我在教学中充分体现以学生为主体,为学生的探究发现提供足够的时空和适当的指导,同时,也为提高课堂教学的有效性,我从以下三个方面谈一点教学体会。
一、设疑迁移,点燃学习的火花
良好的开头是成功的一半。我采用“拼拼摆摆”作为谈话进入正题,不仅可以调动学生的学习兴趣,一一对应、相互依存。对感知倍数和因数进行有效的渗透和拓展。
教学找一个数的倍数时,我依据学情,设计让学生独立探究寻找3的倍数。我设计了尝试练——引出冲突——讨论探究这么一个学习环节。学生带着“又对又好”的要求开始自主练习,学生找倍数的方法有:依次加3、依次乘1、2、3……、用乘法口诀等等。在学生充分讨论的基础上,我组织学生围绕“好”展开评价,有的学生认为:从小到大依次写,因为有序,所以觉得好;有的学生认为:用乘法算式写倍数,既快而且不受前面倍数的影响,可以很快地找到第几个倍数是多少,学生发现3的倍数写不完时都面面相觑,左顾右盼。学生通过讨论,认为用省略号表示比较恰当。用语文中的一个标点符号解决了数学问题,自己发现问题自己解决,学生从中体验到解决问题的愉快感和掌握新知的成就感。
二、操作实践,举例内化,认识倍数和因数
我创设有效的数学学习情境,数形结合,变抽象为直观。首先让学生动手操作把12个小正方形摆成不同的长方形,再让学生写出不同的乘法算式,借助多媒体出示乘法算式引出因数和倍数的意义。这样在学生已有的知识基础上,从动手操作,直观感知,让学生自主体验数与形的结合,进而形成因数与倍数的意义。使学生初步建立了“因数与倍数”的概念。 这样,充分学习、利用、挖掘教材,用学生已有的数学知识引出了新知识,减缓难度,效果较好。
三、注重细节,注重学生的习惯培养
学生在找一个数的因数时最常犯的`错误就是漏找,即找不全。学生怎样按一定顺序找全因数这也正是本课教学的难点。所以在学生交流汇报时,我结合学生所叙思维过程,相机引导并形成有条理的板书,如:36÷1=36,36÷2=18,36÷3=12,36÷4=9。
这样的板书帮助学生有序的思考,形成明晰的解题思路的作用是毋庸质疑的。教师能像教材中那样一头一尾地成对板书因数,这样既不容易写漏,而且学生么随着流程的进行,势必会感受到越往下找,区间越小,需要考虑的数也就越少。当找到两个相邻的自然数时,他们自然就不会再找下去了。书写格式这一细节的教学,既避免了教师罗嗦的讲解,又有效突破了教学难点,我相信像这样润物无声的细节,无论于学生、于课堂都是有利无弊的
由于这节是概念课,因此有不少东西是由老师告知的,但并不意味着学生完全被动地接受。教学之前我知道这节课时间会很紧,所以在备课的时候,我认真钻研了教材,仔细分析了教案,看哪些地方时间安排的可以少一些,所以我在总结倍数的特征,这一环节里缩短出示时间,直接以3个小问题出示,实际效果我认为是比较理想的。课上还应该及时运用多媒体将学生找的因数呈现出来,引导学生归纳总结自己的发现:最小的因数是1,最大的因数是它本身。应该及时跟上个性化的语言评价,激活学生的情感,将学生的思维不断活跃起来。
因数和倍数教学反思 篇十
《倍数和因数》是四下第九单元的内容。教学时,我首先让学生动手操作把12个小正方形摆成不同的长方形,再让学生写出不同的乘法算式,借助乘法算式引出倍数和因数的意义。这样在学生已有的知识基础上,从动手操作到直观感知,让学生自主体验数与形的结合,进而形成倍数与因数的意义,使学生初步建立了“倍数与因数”的概念。根据算式直接说明谁是谁的倍数,谁是谁的因数,学生很容易接受,再通过学生自己举例和交流,进一步加深对倍数和因数意义的`理解。从学生的反应和课堂气氛来看,教学效果还是不错的。
能不重复、不遗漏、有序地找出一个数的倍数和因数,是本课的教学难点。教学时,我先让学生自己找3的倍数,汇报交流后通过对比(一种是没有顺序,一种是有序的)得出如何有序地找一个数的倍数的方法。对于倍数,学生在以前的学习中已有所接触,所以学生很容易学,用的时间也比较少。
对于找一个数的因数,学生最容易犯的错误就是漏找,即找不全。所以在学生交流汇报时,我结合学生所叙思维过程,相机引导并形成有条理的板书,如:36÷1=36,36÷2=18,36÷3=12,36÷4=9,36÷6=6。这样的板书帮助学生有序的思考,形成明晰的解题思路。学生通过观察,发现当找到的两个自然数非常接近时,就不需要再找下去了。书写格式这一细节的教学,既避免了教师罗嗦的讲解,又有效突破了教学难点。
版权声明: 本站仅提供信息存储空间服务,旨在传递更多信息,不拥有所有权,不承担相关法律责任,不代表本网赞同其观点和对其真实性负责。如因作品内容、版权和其它问题需要同本站联系的,一经查实,本站将立刻删除。