当前位置: > 知识>正文

九年级数学上册教案【优秀11篇】2-1-88

2024-08-09 09:12:27 互联网 知识

时间是看不见也摸不到的,就在你不注意的时候,它已经悄悄的和你擦肩而过,我们又有了新的学习内容,让我们对今后的教学工作做个计划吧。以期更好地开展接下来的教学工作,这里给大家分享一些关于最新九年级上册数学教案,方便大家学习。书痴者文必工,艺痴者技必良,以下是www.kuaihuida.com细致的小编老李为大家找到的11篇九年级数学上册教案的相关内容,希望对大家有一些参考价值。

人教版九年级数学上册教案 篇一

教学目标:

1、使学生进一步理解二次函数的基本性质;

2、渗透解析几何,数形结合,函数等数学思想。培养学生发现问题解决问题,及逻辑思维的能力。

3、使学生参与教学过程,通过主体的积极思维,体验感悟数学。逐步建立数学的观念,培养学生独立地获取知识的能力。

教学重点:初步理解数形结合的数学思想

教学难点:初步理解数形结合的数学思想

教学用具:微机

教学方法:探究式、小组合作学习

教学过程:

例1、已知:抛物线y=x2-(m2-1)x-2m2-2

⑴求证:无论m取什么实数,抛物线与x轴一定有两个交点

⑵m取什么实数时,两交点间距离最短?是多少?

解:

△ =(m2-1)2+4(2m2+2)

=m4-2m2+1+8m2+8

=m4+6m2+9

=(m2+3)2

m2≥0

∴m2+3>0

∴△>0

∴抛物线与x轴有两个交点

问题:为什么说当△>0时,抛物线y =ax2+bx+c与x轴有两个交点。(能否从数和形两方面说明)

设计意图:在课堂上创设让学生说数学的机会,学会合作学习,以达到①经验共享,在思维的碰撞中共同提高。②学会合作,消除个人中心。③发现自我,提高参与度。④弘扬个体的主体性,形成健康,丰富的个性。

数:点在曲线上,点的坐标满足曲线的方程。反之,曲线方程的每一个实数解对应的点都在曲线上。抛物线与x轴的交点,既在抛物线上,又在x轴上。所以交点的坐标既满足抛物线的解析式,也满足x轴的解析式。设交点坐标为(x,y)

这样交点问题就转化成求这个二元二次方程组的解。代入y =0,消去y,转化成ax2+bx+c=0这个一元二次方程求根问题。根据以前学过的知识,当△>0时, ax2+bx+c=0有两个不相等的实根。∴y =ax2+bx+c

y =0

有两个不等的实数解

∴抛物线与x轴交于两个不同的点。

形:顶点在x轴上方,且开口向下。或者顶点在x轴下方,且开口向上。

设计意图:渗透解析几何的基本思想

使学生掌握转化思想使学生在解题过程中,感知数学的直观性和形式化这二重性。掌握数形结合,分类讨论的思想方法。逐步学会数学的思维。

转化成代数语言为:

小结:第一种方法,根据解析几何的基本思想。将求曲线的交点问题,转化成求方程组的解的问题。

第二种方法,借助于图象思考问题,比较直观。发现规律后,再用数学的符号语言将其形式化。这既体现了数学中的数形结合的思想方法,也是探索解数学问题的一般方法。

思考:试从数、形两方面说明抛物线与x轴的交点个数与判别 式的符号的关系。

设计意图:数学学习是一个再创造的过程,不能等同于数学知识的汇集,而要让学生经历数学知识的创造过程。使主体积极地参与到学习中去。以数学知识为载体,揭示出蕴涵于其中的数学思想方法,逐步形成数学观念。

⑵m取什么实数时,两交点间距离最短?是多少?

解:设二次函数与x轴的两交点为(x1,0),(x2,0)

解法㈠ 由⑴可知m为任何实数时, 都有△>0

解①

∴ x1+x2=m2-1

x1·x2=-2(m2+1)

∴│x2-x1│=

=

=

=

=m2+3

∴当m =0时,两交点最小距离为3

这里两交点间距离是m的函数

设计意图:培养学生的问题意识。在解题过程中,发现问题,并能运用已有的数学知识,将其一般化,形式化,解决问题,体会数学问题解决的一般方法。培养学生独立地获取数学知识的能力。渗透函数思想

问题: 观察本题两交点间距离与判别式的值之间有何异同?具有一般的规律吗?如何说明。

设x1、x2 为ax2+bx+c =0的两根

可以推出:

还可以理解为顶点到x轴距离最短。

设计意图:在对比、分析中,明确概念,揭示知识间的联系,帮助学生建立良好的认知结构。

小结:观察这道题的结论,我们猜测出规律,将其一般化,推导出这个公式,这是学习数学知识的一般方法。

解法㈡:用十字相乘法或求根公式法求根。

思考:一元二次方程与二次函数的关系。

思考:求m取什么实数时,y =x2-(m2-1)x -2 m2-2被直线y =2所截得的线段最短?是多少?

练习:

观察函数 的图象,回答:

(1)y>0时,x的取值范围如何?

(2)y=0时,x取什么值?

(1)y<0时,x的取值范围如何?

小结:数与形是数学中相互依赖的两个方面。图形比较直观,可以启发思路;而数学的严格证明也是必不可少的。直观性和形式化是数学的两重性。

探究活动

探究问题:

欣欣日用品零售商店,从某公司批发部每月按销售合同以批发单价每把8元购进雨伞(数量至少为100把),欣欣商店根据销售记录,这批雨伞以零售单价每把为14元出售时,月销售量为100把,数学教案-二次函数y=ax2+bx+c 的图象,初中数学教案《数学教案-二次函数y=ax2+bx+c 的图象》。如果零售单价每降价0.1元 , 月销售量就要增加5把。

(1) 欣欣日用品零售商店以零售单价14元出售时,一个月的利润为多少元?

(2) 欣欣日用品零售商店为了扩大销售记录,现实行降价销售,问分别降价0.2元、0.8元、1.2元、1.6元、2.4元、3元时的利润是多少?

(3) 欣欣日用品零售商店实行降价销售后,问降价多少元时利润最大?最大利润为多少元?

(4) 现在该公司的批发部为了再次扩大这种雨伞的销售量,给零售商制定如下优惠措施:如果零售商每月从批发部购进雨伞的数量超过100把,其超过100把的部分每把按原价九五折(即百分之95)付费,但零售价每把不能低于10元。欣欣日用品零售商店应将这种雨伞的零售单价定为每把多少元出售时,才能使这种雨伞的月销售利润最大?最大月销售利润是多少元?(销售利润=销售款额—进货款额)

解:(1)(14—8) (元)

(2)638元、728元、748元、792元、792元、750元。

(3)设降价 元时利润最大,最大利润为 元

=

=

=

∴ 当 时, 有最大值

(4)设降价 元时利润最大,利润为 元

(其中 )。

化简,得 。

∴ 当 时, 有最大值。

∴ 。

数学教案-二次函数y=ax2+bx+c 的图象

中学九年级上册数学教案 篇二

教学目标:

1、根据统计结果回答问题、发现问题,进行简单的预测和较为合理的判断。

2、让学生进行一些社会调查,体验实践性和现实性,激发学生的学习兴趣,培养学生的应用意识,并接受其中的思想教育。

教学重点:

让学生选择记录方法作记录,并体会哪种记录方法既清楚又方便。

教学难点:

根据统计表提出问题并初步进行简单的预测。

教法:

采用讲授法、讨论法、发现法。确立学生的主体地位,让学生真正地成为学习的主人,将学习的内容与学生的实际水平有效地结合起来,让学生在引导中探索,探索中发展,发展中提高。

教学过程:

一、情境引入

教师谈话:同学们,新的学期已经开始了几天,我们的学习生活正逐渐步入正轨,今天,老师要请你们帮忙,为老师评选一名数学科代表。

教师出示评选条件:

1、数学成绩优秀。

2、数学成绩一般,但非常希望能提高数学成绩。

3、愿意为大家服务,乐意为数学老师服务。

师:你想推荐谁当数学科代表?(学生自由发言并说出理由。)

教师根据学生的回答,筛选出两位学生的名字写在黑板上,如张三、李四。

二、互动新授

1、学习用记录的方法收集、整理数据。

(1)收集数据。

教师引导:刚才我们通过筛选选出了两位合适的同学,那么,这两位同学哪个更合适呢?我们要从这两位同学中选一位,你有没有合适的方法?

学生讨论,说说选择的方法。

教师提问:用我们上节课学习的举手统计的方法可行吗?为什么?

小结:举手投票,存在很多人情因素,有时会出现其他同学不公平、不服气的情况,影响同学之间的'和睦相处,那有没有更公平、公正的方法呢?(学生自由发言。)

出示小精灵的话:可以用投票的方式来决定谁能担任科代表。

教师讲解投票的方法,拿出准备好的小纸张,从黑板上选一个你心目中的科代表的名字。

学生动笔写,将写好的纸张折好,由小组长收上来。

(2)学习记录方法。

教师将收好的纸张放在讲台桌上。

师:现在老师要从这些纸张里拿出一张,报出名字,同学们要想办法把它记在纸张上,老师报一个,你记一个,一直到把这些纸张记完。请小组讨论一下,你们准备用什么方法来统计数?(提示学生:纸张很多,报得又很快,必须抓紧时间统计,能分工合作。)

指名学生说,肯定学生的方法,如画“○”、画“∣”、画“正”等。及搜狐请方法独特的学生到黑板上板演,其他学生用自己想到的方法记录。

讲述:记录完的讨论一下,哪种方法记得既清楚又方便,将不同的方法展示在黑板上让大家瞧一瞧。

完成统计表。

初中数学九年级上册教案 篇三

教学目标

1.使学生掌握百分数、小数互化的方法,并能正确的互化。

2.在学习互化的过程中使学生认识到这二者之间的内在联系,为后面学习百分数的计算和应用打下基础。

3.在学习的过程中培养学生的分析思维和抽象概括能力。

教学重难点

使学生理解掌握百分数和小数互化的方法。

教学工具

课件

教学过程

一、活动(一)复习准备

1、课件出示复习题。

张宇跳绳个数是陈聪的1.37倍。

王志祥跳绳个数是陈聪的6/5.

刘星宇跳绳个数是陈聪的137.5%.

思考:这三个人谁跳得最多,怎么比较?

2.引入新课。

在生产、工作和生活中进行统计和分析时,为了便于统计和比较,我们常用百分数表示一些数据。除了用百分数表示,还可以用什么数表示?

这节课我们就来学习百分数和小数的互化以及百分数和分数的互化。

二、活动(二)百分数和小数的互化。

(1)回忆小数化分数的过程。

(2)小数要化成百分数,分母应是多少?怎样使它的分母变成100呢?

三、活动(三) 百分数化成小数

1、例1:把0.25,1.4,0.123化成百分数。

①小数化百分数分几步进行?

②学生回答,教师板书:0.25=25/100=25%

③1.4怎样化成分母是100的分数?根据什么?

④“做一做”:把下面各小数化成百分数。

0.38 1.05 0.055 3

⑤观察例1的各小数,化成百分数后发生了怎样的变化?

你所做的练习的各数是不是也发生了同样的变化?这一变化符合什么?

⑥现在你能很快地把下列小数化成百分数吗?(口答)

2.5 0.785 0.16

2、例2:把27%,135%,0.4%化成小数。

学生自己试做,学生总结方法

①说一说百分数化小数的方法。

②观察百分数化成小数发生了什么变化?

③把下面各百分数化成小数

15% 80% 3.5%

3、小结。

通过刚才的分析、归纳,谁能说一说百分数和小数怎样互化?

四、巩固与提高

1、p80“做一做”

2、练习十九的第2题

五、作业

练习十九的第1题

课后习题

练习十九的第1题

中学九年级上册数学教案 篇四

听了刘老师执教的这节《有余数的除法》后,使我受益非浅,感受颇深,现粗浅的谈谈自己听后的收获及所思。

1、在课堂教学中老师明确本课教学目标和重难点,结合教材、利用教材,承认教材是知识的载体,在充分把握教材知识点的前提下灵活处理教材内容,设计适合学生发展的教学过程,结合学生的生活实际,用分东西来引入,提出了开放性问题“由你摆,你想每组摆几盆花?”从而满足更多孩子内心的渴望和需求,孩子的学习热情和爱好很轻易被激发起来,为后面的教学活动做好铺垫,从而达到突出重点、突破难点的目标,呈献给大家与众不同的一课。

2、通过操作将余数概念教学直观化。

余数的产生和意义理解是本节课的重点。《有余数除法》教材上是这样设计的:“15盆花,每组摆5盆,可以摆几组?”先让学生感知能够平均分的现象,然后进而安排了:“有23盆花,为装扮教室想把这些花平均分成5组,每组最多摆几盆,还剩几盆?”让学生体验不能平均分的现象——余数的产生。刘老师教学这个环节中并不是让学生凭空的去想、去算,而是通过用圆片代表花,让学生去摆去操作,自己发现什么时候能平均分,什么时候不能平均分,不能平均分的时候就产生了余数,余数就是平均分后剩下的数。教学过程中通过摆一摆学生人人动手操作,让学生形象化得理解了余数概念,学生对余数的理解将会更加深刻。

3、学生的主体地位与教师的主导作用处理恰当。

在整过教学过程中教师们给予了学生较大的自由空间,让学生动手操作、自主探究、合作交流,对问题进行猜测验证等,学生大胆参与、积极思考,真正成了学习的'主体。而教师的主导作用也是发挥得恰到好处,真正起到了一个引导者、促进者的作用。我想,正因为如此,学生的操作活动才能有条不紊。

4、在教学有余数除法的横式和竖式的写法时,教师应该多强调商、余数以及算式所表示的意义,这样可以加深学生对算式所表示的意义的理解。竖式的学习中可以适当的渗透试商的方法和余数要比除数小的要求,为后面的教学做好准备。

数学九年级上教案 篇五

一、基本情况分析:

去年学生期末考试成绩普遍不错,但是优生不广,尖子生也不拔尖。学生对知识的掌握有很多差异。对于优生学来说,他们能够透彻的理解知识,知识之间的内在联系也是清晰的。对于几乎所有的学生来说,一些基础知识无法有效掌握,学生仍然缺乏大量的推理训练。推理思维方法和写作方法都有一定的难度,怕几何难,相关知识也不是很透彻。学习能力方面,学生课外主动获取知识的能力较差。为了减轻学生的经济负担和课业负担,不鼓励学生购买补充参考书,学生独立扩展知识的能力没有得到很好的培养。在以后的教学中,培养学生课后主动获取知识的能力。需要加强学生的逻辑推理能力、逻辑思维能力和计算能力,提高学生的整体表现,适时补充课外知识,拓展学生知识,提高学生素质;在学习态度上,有些学生可以在课堂上专心学习,积极参与。大多数学生在数学学习上雄心勃勃,浮躁,学习态度和学习习惯需要培养。学生的学习习惯并不理想,比如预习的习惯,总结的习惯,自习课专心学习的习惯,主动改错(考试和作业后)的习惯。有些学生对他们没有或不够重视,需要老师的监督才能这样做。陶行知说:“教育是培养习惯”,这是这次教学的重点。

二、指导思想:

通过九年的数学教学,可以提供进一步学习所必需的数学基础知识和技能,进一步培养学生的运算、思维和空间想象能力,利用所学知识解决简单的实际问题,教育学生掌握基础知识和技能,培养学生的逻辑思维能力、运算能力、空间概念和解决简单实际问题的能力,使学生逐步学会正确合理地操作,逐步学会观察、分析、综合、抽象和总结。会用归纳法和演绎法,类比进行简单推理。提高学习数学的兴趣,逐步培养学生良好的学习习惯和求实态度。较强的学习毅力和独立思考探索的新思路。培养学生运用数学知识解决问题的能力。

三,教学内容

这学期的教学内容由五章组成:

第二十二章:二次根式;第二十三章:一维二次方程;第二十四章:图形的相似性;

第二十五章:求解直角三角形;第26章:随机事件的概率。

四、教学重点和难点

焦点:

1、要求学生掌握证明的基本要求和方法,学会推理和论证;

2、探索证明的思路和方法,倡导证明的多样性。

困难:

1、引导学生探索、猜想、证明,认识到证明的必要性;

2、在教学中渗透归纳、类比、转化等数学思想。

3、在教学过程中把握好以下几个环节:

(1)认真备课。认真学习教材和教学大纲,明确教学目标,把握重点和难点,精心设计教学过程,重视每章内容与前后知识的关系,重视课后反思,设计每节课师生互动的细节。

(2)抓住课堂45分钟。

严格按照教学计划,精心设计每节课的每一个环节,努力实现每节课的教学目标,突出重点,分散难点,在课后反馈。选择合适的习题和试卷,及时批改作业,及时当面给学生指出问题,引导学生理解,不留难点,让学生学到东西。

不及物动词教学措施:

1、认真学习新课程标准,掌握教材。

2、认真备课,努力全面掌握学生动态。

3、认真教每一课。

4、对每个班级实施课后辅导,查漏补缺。

5、积极与其他教师沟通,加强教学和科研改革,提高教学水平。

6、复习阶段,允许学生动脑子,动手。通过各种习题、综合试题、模拟试题的训练,让学生逐渐熟悉各种知识点,并能熟练运用。

九年级数学上册教案:二次根式 篇六

二次根式

教材内容

1.本单元教学的主要内容:

二次根式的概念;二次根式的加减;二次根式的乘除;最简二次根式。

2.本单元在教材中的地位和作用:

二次根式是在学完了八年级下册第十七章《反比例正函数》、第十八章《勾股定理及其应用》等内容的基础之上继续学习的,它也是今后学习其他数学知识的基础。

教学目标

1.知识与技能

(1)理解二次根式的概念。

(2)理解 (a≥0)是一个非负数,( )2=a(a≥0), =a(a≥0).

(3)掌握 ? = (a≥0,b≥0), = ? ;

= (a≥0,b>0), = (a≥0,b>0).

(4)了解最简二次根式的概念并灵活运用它们对二次根式进行加减。

2.过程与方法

(1)先提出问题,让学生探讨、分析问题,师生共同归纳,得出概念。再对概念的内涵进行分析,得出几个重要结论,并运用这些重要结论进行二次根式的计算和化简。

(2)用具体数据探究规律,用不完全归纳法得出二次根式的乘(除)法规定,并运用规定进行计算。

(3)利用逆向思维,得出二次根式的乘(除)法规定的逆向等式并运用它进行化简。

(4)通过分析前面的计算和化简结果,抓住它们的共同特点,给出最简二次根式的概念。利用最简二次根式的概念,来对相同的二次根式进行合并,达到对二次根式进行计算和化简的目的。

3.情感、态度与价值观

通过本单元的学习培养学生:利用规定准确计算和化简的严谨的科学精神,经过探索二次根式的重要结论,二次根式的乘除规定,发展学生观察、分析、发现问题的能力。

教学重点

1.二次根式 (a≥0)的内涵。 (a≥0)是一个非负数;( )2=a(a≥0); =a(a≥0)及其运用。

2.二次根式乘除法的规定及其运用。

3.最简二次根式的概念。

4.二次根式的加减运算。

教学难点

1.对 (a≥0)是一个非负数的理解;对等式( )2=a(a≥0)及 =a(a≥0)的理解及应用。

2.二次根式的乘法、除法的条件限制。

3.利用最简二次根式的概念把一个二次根式化成最简二次根式。

教学关键

1.潜移默化地培养学生从具体到一般的推理能力,突出重点,突破难点。

2.培养学生利用二次根式的规定和重要结论进行准确计算的能力,培养学生一丝不苟的科学精神。

单元课时划分

本单元教学时间约需11课时,具体分配如下:

21.1 二次根式 3课时

21.2 二次根式的乘法 3课时

21.3 二次根式的加减 3课时

教学活动、习题课、小结 2课时

21.1 二次根式

第一课时

教学内容

二次根式的概念及其运用

教学目标

理解二次根式的概念,并利用 (a≥0)的意义解答具体题目。

提出问题,根据问题给出概念,应用概念解决实际问题。

教学重难点关键

1.重点:形如 (a≥0)的式子叫做二次根式的概念;

2.难点与关键:利用“ (a≥0)”解决具体问题。

教学过程

一、复习引入

(学生活动)请同学们独立完成下列三个问题:

问题1:已知反比例函数y= ,那么它的图象在第一象限横、纵坐标相等的点的坐标是___________.

问题2:如图,在直角三角形ABC中,AC=3,BC=1,∠C=90°,那么AB边的长是__________.

问题3:甲射击6次,各次击中的环数如下:8、7、9、9、7、8,那么甲这次射击的方差是S2,那么S=_________.

老师点评:

问题1:横、纵坐标相等,即x=y,所以x2=3.因为点在第一象限,所以x= ,所以所求点的坐标( , ).

问题2:由勾股定理得AB=

问题3:由方差的概念得S= .

二、探索新知

很明显 、 、 ,都是一些正数的算术平方根。像这样一些正数的算术平方根的式子,我们就把它称二次根式。因此,一般地,我们把形如 (a≥0)的式子叫做二次根式,“ ”称为二次根号。

(学生活动)议一议:

1.-1有算术平方根吗?

2.0的算术平方根是多少?

3.当a<0, 有意义吗?

老师点评:(略)

例1.下列式子,哪些是二次根式,哪些不是二次根式: 、 、 、 (x>0)、 、 、- 、 、 (x≥0,y≥0).

分析:二次根式应满足两个条件:第一,有二次根号“ ”;第二,被开方数是正数或0.

解:二次根式有: 、 (x>0)、 、- 、 (x≥0,y≥0);不是二次根式的有: 、 、 、 .

例2.当x是多少时, 在实数范围内有意义?

分析:由二次根式的定义可知,被开方数一定要大于或等于0,所以3x-1≥0, 才能有意义。

解:由3x-1≥0,得:x≥

当x≥ 时, 在实数范围内有意义。

三、巩固练习

教材P练习1、2、3.

四、应用拓展

例3.当x是多少时, + 在实数范围内有意义?

分析:要使 + 在实数范围内有意义,必须同时满足 中的≥0和 中的x+1≠0.

解:依题意,得

由①得:x≥-

由②得:x≠-1

当x≥- 且x≠-1时, + 在实数范围内有意义。

例4(1)已知y= + +5,求 的值。(答案:2)

(2)若 + =0,求a2004+b2004的值。(答案: )

五、归纳小结(学生活动,老师点评)

本节课要掌握:

1.形如 (a≥0)的式子叫做二次根式,“ ”称为二次根号。

2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数。

六、布置作业

1.教材P8复习巩固1、综合应用5.

2.选用课时作业设计。

3.课后作业:《同步训练》

九年级上册数学的教案 篇七

1.比喻:根据事物的相似点,用具体的、浅显、熟知的事物来说明抽象的、深奥的、生疏的事物,即打比方。作用:能将表达的内容说得生动具体形象,给人以鲜明深刻的印象,用浅显常见的事物对深奥生疏事物解说、帮助人深入理解。比喻的三种类型:明喻、暗喻和借喻。

不要把有“像”、“好像”的句子都看成比喻句。多数情况下,‘像“、“好象”、“仿佛”表示比喻,但是要注意以下几种情况不是比喻:

(1)表示比较的。如:他长得很像他哥哥。

(2)表示推测、揣度的。如:他刚才好像出去了。

(3)表示例举。如:本次考试很多同学的进步很大,像__等等。

(4)表示想象。如:闭了眼,树上仿佛已经满是桃儿、杏儿、梨儿。

2.拟人:把物当作人来写,赋予物以人的言行或思想感情,用描写人的词来描写物。作用:使具体事物人格化,语言生动形象。

3.夸张:对事物的性质、特征等故意地夸张或缩小。作用:揭示事物本质,烘托气氛,加强渲染力,引起联想效果。

4.排比:把结构相同或相似、语气一致、意思相关联的三个以上的句子或成分排列在一起。作用:增强语言气势,加强表达效果。

5.对偶:字数相等,结构形式相同,意义对称的一对短语或句子,表达两个相对或相近的意思。作用:整齐匀称,节奏感强,高度概括、易于记忆,有音乐美感。如:墙上芦苇,头重脚轻根底浅;山间竹笋,嘴尖皮厚腹中空。

6.反复:为了强调某个意思,某种感情,有意重复某个词语或句子。反复的种类:连续反复和间隔反复。连续反复中间无其他词语间隔。间隔反复中间有其他的词语。

7.设问:为了引起别人的注意,故意先提出问题,然后自己回答。作用:提醒人们思考,有的为了突出某些内容。

8.反问:无疑无问,用疑问形式表达确定的意思,用肯定形式反问表否定,用否定形式反问表肯定。

9.引用:引用现成的话来提高语言表达效果,分直接引用和间接引用两种。

10.借代:用相关的事物代替所要表达的事物。借代种类:特征代事物、具体代抽象、部分代替整体。

九年级数学上册电子教案第三章之 篇八

九年级上册教案

九年级英语上册 Module 2 Greatbooks教学设计 【教材分析】 1、教学内容分析:本模块的话题是谈论书、作家、思想家、戏影、诗  歌等。语法是一般现在时被动语态。 2、学情分析:谈论书、作家、思想家等是学生感兴趣的话题。本模块的学习是通过该话题的'讨论,学习并掌握一般现在时被动语态的肯定句、否定句、一般疑问句和特殊疑问句。  对于本单元,需要学生能应用所学知识点读懂介绍和评价文学作品的文章,谈论自己喜欢的文学作品,写短文介绍和评价自己所喜欢的文章。 【学法指导】  1、  虚心向同学学习,分工合作完成任务。  2、  将本校的三体五环多元评价的模式与现有科技资源结合为学习和生活服务。 【学习目标】  1、knowledge aims:  Key vocabulary---  behaviour ,cave,freedom,funeral,social,theme,treasure,clever,dead,pleased,alive,southern,state,run away,for a time,grow up,talk about  Key structures---Passive  voice   2、Ability  aims: To get information from the reading passage about The Adventures of Tom Sawyer; To write a short passage about your favourite great book 3、Feeling  aims:  Reading books is an important way to get knowledge .Lead them to read more books and read good books by learning this lesson .Let them own more wisdom and improve their quality by reading books .    【重点难点】 1、New words and phrases. 2、How to introduce a book. 【课  型】Reading and writing 【教  具】cards,tape recorder,a small blackboard,paper 【教学过程】  Step 1 导学激趣 1、Arouse the Ss’ interest by using some questions: (1) Have you read novels?  (2) What novels have you read? (3)What do you think of it? 2、Learn new words(cards )   Intentions: To draw attention to this lesson.  Step 2 自主质疑 1、listen to the tape,pay attention to the pronunciation and try to master the main ideas of  each  paragraph . 2、read the passage by yourself and go on thinking the main idea of each paragraph,and underline the problems you cant solve by yourself.At the same time ,think about two questions.  Step 3  互动释疑 1、Discuss the problems in groups and try to solve them and summarize the checkpoints ,write them in the paper they have.  Step 4 知识梳理 Let the students show the checkpoints in front of the class ,the teacher explain the difficult points.  Step 5 反馈提高 1、Group work.let them discuss whatre the main elements if they want to introduce a book. 2、Think about a good book they read,and introuduce it to the others,if necessary write them down on their paper .

九年级上册数学教学计划 篇九

培养学生的逻辑思维能力、运算能力、空间观念和解决简单实际问题的能力,使学生逐步学会正确、合理地进行运算,逐步学会观察分析、综合、抽象、概括。会用归纳演绎、类比进行简单的推理。使学生懂得数学来源与实践又反过来作用于实践。提高学习数学的兴趣,逐步培养学生具有良好的学习习惯,实事求是的态度、顽强的学习毅力和独立思考、探索的新思想。培养学生应用数学知识解决问题的能力。

二、教学内容

本学期所教九年级数学包括第二十一章《二次根式》,第二十二章《一元二次方程》,第二十三章《旋转》,第二十四章《圆》。第二十五章《概率初步》。代数三章,几何两章。而且本学期要授完下册第二十七章内容。其中第二十一章《二次根式》,第二十二章《一元二次方程》,第二十三章《旋转》已经由原四中教师在假期补课和开学的两周中上完,我从第二十四章《圆》上到第二十五章《概率初步》。因此我的教学任务实际就是后面这两章。

三、教学目标:

教育学生掌握基础知识与基本技能,培养学生的逻辑思维能力、运算能力、空间观念和解决简单实际问题的能力,使学生逐步学会正确、合理地进行运算, 逐步学会观察分析、综合、抽象、概括。会用归纳演绎、类比进行简单的推理。使学生懂得数学来源与实践又反过来作用于实践。提高学习数学的兴趣,逐步培养学 生具有良好的学习习惯,实事求是的态度。顽强的学习毅力和独立思考、探索的新思想。培养学生应用数学知识解决问题的能力。

知识技能目标:掌握二次根式的概念、性质及计算;会解一元二次方程;理解旋转的基本性质;掌握圆及与圆有关的概念、性质;理解概率在生活中的应用。过程方法目标:培养学生的观察、探究、推理、归纳的能力,发展学生合情推理能力、逻辑推理能力和推理认证表达能力,提高知识综合应用能力。态度情感目标:进一步感受数学与日常生活密不可分的联系,同时对学生进行辩证唯物主义世界观教育。

初三的上册数学教案 篇十

1、教材分析

(1)知识结构

(2)重点、难点分析

重点:三角形内切圆的概念及内心的性质。因为它是三角形的重要概念之一。

难点:①难点是“接”与“切”的含义,学生容易混淆;②画三角形内切圆,学生不易画好。

2、教学建议

本节内容需要一个课时。

(1)在教学中,组织学生自己画图、类比、分析、深刻理解三角形内切圆的概念及内心的性质;

(2)在教学中,类比“三角形外接圆的画图、概念、性质”,开展活动式教学。

教学目标 :

1、使学生了解尺规作的方法,理解三角形和多边形的内切圆、圆的外切三角形和圆的外切多边形、三角形内心的概念;

2、应用类比的数学思想方法研究内切圆,逐步培养学生的研究问题能力;

3、激发学生动手、动脑主动参与课堂教学活动。

教学重点:

三角形内切圆的作法和三角形的内心与性质。

教学难点 :

三角形内切圆的作法和三角形的内心与性质。

教学活动设计

(一)提出问题

1、提出问题:如图,你能否在△ABC中画出一个圆?画出一个的圆?想一想,怎样画?

2、分析、研究问题:

让学生动脑筋、想办法,使学生认识作三角形内切圆的实际意义。

3、解决问题:

例1 作圆,使它和已知三角形的各边都相切。

引导学生结合图,写出已知、求作,然后师生共同分析,寻找作法。

提出以下几个问题进行讨论:

①作圆的关键是什么?

②假设⊙I是所求作的圆,⊙I和三角形三边都相切,圆心I应满足什么条件?

③这样的点I应在什么位置?

④圆心I确定后半径如何找。

A层学生自己用直尺圆规准确作图,并叙述作法;B层学生在老师指导下完成。

完成这个题目后,启发学生得出如下结论: 和三角形的各边都相切的圆可以作一个且只可以作出一个。

(二)类比联想,学习新知识。

1、概念:和三角形各边都相切的圆叫做,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形。

2、类比:

名称

确定方法

图形

性质

外心(三角形外接圆的圆心)

三角形三边中垂线的交点

(1)OA=OB=OC;

(2)外心不一定在三角形的内部。

内心(三角形内切圆的圆心)

三角形三条角平分线的交点

(1)到三边的距离相等;

(2)OA、OB、OC分别平分∠BAC、∠ABC、∠ACB;

(3)内心在三角形内部。

3、概念推广:和多边形各边都相切的圆叫做多边形的内切圆,这个多边形叫做圆的外切多边形。

4、概念理解:

引导学生理解及圆的外切三角形的概念,并与三角形的外接圆与圆的内接三角形概念相比较,以加深对这四个概念的理解。使学生弄清“内”与“外”、“接”与“切”的含义。“接”与“切”是说明三角形的顶点和边与圆的关系:三角形的顶点都在圆上,叫做“接”;三角形的边都与圆相切叫做“切”。

(三)应用与反思

例2 如图,在△ABC中,∠ABC=50°,∠ACB=75°,点O是三角形的内心。

求∠BOC的度数

分析:要求∠BOC的度数,只要求出∠OBC和∠0CB的度数之和就可,即求∠l十∠3的度数。因为O是△ABC的内心,所以OB和OC分别为∠ABC和∠BCA的平分线,于是有∠1十∠3= (∠ABC十∠ACB),再由三角形的内角和定理易求出∠BOC的度数。

解:(引导学生分析,写出解题过程)

例3 如图,△ABC中,E是内心,∠A的平分线和△ABC的外接圆相交于点D

求证:DE=DB

分析:从条件想,E是内心,则E在∠A的平分线上,同时也在∠ABC的平分线上,考虑连结BE,得出∠3=∠4.

从结论想,要证DE=DB,只要证明BDE为等腰三角形,同样考虑到连结BE.于是得到下述法。

证明:连结BE.

E是△ABC的内心

又∵∠1=∠2

∠1=∠2

∴∠1+∠3=∠4+∠5

∴∠BED=∠EBD

∴DE=DB

练习分析作出已知的锐角三角形、直角三角形、钝角,并说明三角形的内心是否都在三角形内。

(四)小结

1.教师先向学生提出问题:这节课学习了哪些概念?怎样作已知?学习时互该注意哪些问题?

2.学生回答的基础上,归纳总结:

(1)学习了三角形内切圆、三角形的内心、圆的外切三角形、多边形的内切圆、圆的外切多边形的概念。

(2)利用作三角形的内角平分线,任意两条角平分线的交点就是内切圆的圆心,交点到任意一边的距离是圆的半径。

(3)在学习有关概念时,应注意区别“内”与“外”,“接”与“切”;还应注意“连结内心和三角形顶点”这一辅助线的添加和应用。

(五)作业

教材P115习题中,A组1(3),10,11,12题;A层学生多做B组3题。

探究活动

问题:如图1,有一张四边形ABCD纸片,且AB=AD=6cm,CB=CD=8cm,∠B=90°.

(1)要把该四边形裁剪成一个面积的圆形纸片,你能否用折叠的方法找出圆心,若能请你度量出圆的半径(精确到0.1cm);

(2)计算出的圆形纸片的半径(要求精确值).

提示:(1)由条件可得AC为四边形似的对称轴,存在内切圆,能用折叠的方法找出圆心:

如图2,①以AC为轴对折;②对折∠ABC,折线交AC于O;③使折线过O,且EB与EA边重合。则点O为所求圆的圆心,OE为半径。

(2)如图3,设内切圆的半径为r,则通过面积可得:6r+8r=48,∴r=.

九年级数学上册教案 篇十一

配方法的基本形式

理解间接即通过变形运用开平方法降次解方程,并能熟练应用它解决一些具体问题。

通过复习可直接化成x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程的解法,引入不能直接化成上面两种形式的一元二次方程的解题步骤。

重点

讲清直接降次有困难,如x2+6x-16=0的一元二次方程的解题步骤。

难点

将不可直接降次解方程化为可直接降次解方程的“化为”的转化方法与技巧。

一、复习引入

(学生活动)请同学们解下列方程:

(1)3x2-1=5 (2)4(x-1)2-9=0 (3)4x2+16x+16=9 (4)4x2+16x=-7

老师点评:上面的方程都能化成x2=p或(mx+n)2=p(p≥0)的形式,那么可得

x=±p或mx+n=±p(p≥0).

如:4x2+16x+16=(2x+4)2,你能把4x2+16x=-7化成(2x+4)2=9吗?

二、探索新知

列出下面问题的方程并回答:

(1)列出的经化简为一般形式的方程与刚才解题的方程有什么不同呢?

(2)能否直接用上面前三个方程的解法呢?

问题:要使一块矩形场地的长比宽多6 m,并且面积为16 m2,求场地的长和宽各是多少?

(1)列出的经化简为一般形式的方程与前面讲的三道题不同之处是:前三个左边是含有x的完全平方式而后二个不具有此特征。

(2)不能。

既然不能直接降次解方程,那么,我们就应该设法把它转化为可直接降次解方程的方程,下面,我们就来讲如何转化:

x2+6x-16=0移项→x2+6x=16

两边加(6/2)2使左边配成x2+2bx+b2的形式→x2+6x+32=16+9

左边写成平方形式→(x+3)2=25降次→x+3=±5即x+3=5或x+3=-5

解一次方程→x1=2,x2=-8

可以验证:x1=2,x2=-8都是方程的根,但场地的宽不能是负值,所以场地的宽为2 m,长为8 m.

像上面的解题方法,通过配成完全平方形式来解一元二次方程的方法,叫配方法。

可以看出,配方法是为了降次,把一个一元二次方程转化为两个一元一次方程来解。

例1 用配方法解下列关于x的方程:

(1)x2-8x+1=0 (2)x2-2x-12=0

分析:(1)显然方程的左边不是一个完全平方式,因此,要按前面的方法化为完全平方式;(2)同上。

解:略。

三、巩固练习

教材第9页 练习1,2.(1)(2).

四、课堂小结

本节课应掌握:

左边不含有x的完全平方形式的一元二次方程化为左边是含有x的完全平方形式,右边是非负数,可以直接降次解方程的方程。

五、作业布置

根式

版权声明: 本站仅提供信息存储空间服务,旨在传递更多信息,不拥有所有权,不承担相关法律责任,不代表本网赞同其观点和对其真实性负责。如因作品内容、版权和其它问题需要同本站联系的,一经查实,本站将立刻删除。