协方差计算公式(方差、标准差、协方差、有什么区别)
协方差表示的是两个变量总体误差的期望,2、方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量,协方差表示的是两个变量的总体的误差,协方差表示的是两个变量的总体的误差,3、协方差(Covariance)在概率论和统计学中用于衡量两个变量的总体误差,方差、标准差、协方差、有什么区别方差、标准差、协方差区别如下:1、概念不同统计中的方差(样本方差)是每个样本值与全体样本值的平均数之差的平方值的平均数,两个变量之间的协方差就是正值,那么两个变量之间的协方差就是负值。
方差、标准差、协方差、有什么区别
方差、标准差、协方差区别如下:
1、概念不同
统计中的方差(样本方差)是每个样本值与全体样本值的平均数之差的平方值的平均数;
标准差是总体各单位标准值与其平均数离差平方的算术平均数的平方根;
协方差表示的是两个变量的总体的误差,这与只表示一个变量误差的方差不同。
2、计算方法不同
方差的计算公式为:
式中的s²表示方差,x1、x2、x3、.......、xn表示样本中的各个数据,M表示样本平均数;
标准差=方差的算术平方根=s=sqrt(((x1-x)^2 +(x2-x)^2 +......(xn-x)^2)/n);
协方差计算公式为:Cov(X,Y)=E[XY]-E[X]E[Y],其中E[X]与E[Y]是两个实随机变量X与Y的期望值。
3、意义不同
方差和标准差都是对一组(一维)数据进行统计的,反映的是一维数组的离散程度;
而协方差是对2组数据进行统计的,反映的是2组数据之间的相关性。
扩展资料
由于方差是数据的平方,与检测值本身相差太大,人们难以直观的衡量,所以常用方差开根号换算回来这就是要说的标准差(SD)。
在统计学中样本的均差多是除以自由度(n-1),它的意思是样本能自由选择的程度。当选到只剩一个时,它不可能再有自由了,所以自由度是(n-1)。
参考资料来源:百度百科—方差
参考资料来源:百度百科—标准差
参考资料来源:百度百科—协方差
协方差公式
协方差的性质(1)COV(X,Y)=COV(Y,X); (2)COV(aX,bY)=abCOV(X,Y),(a,b是常数); (3)COV(X1+X2,Y)=COV(X1,Y)+COV(X2,Y)。 由性质(3)展开cov(x-2y,2x+3y)=cov(x-2y,2x)+cov(x-2y,3y)=cov(x,2x)-cov(2y,2x)+cov(x,3y)-cov(2y,3y)又有COV(X,Y)=E(XY)-E(X)E(Y)。以上四式可分别写成cov(x,2x)=E(2x^2)-E(x)E(2x)=2Ex^2-2ExEx=2Dx --1cov(2y,3y)=E(6y^2)-E(2y)E(3y)=6Ey^2-6EyEy=6Dy --2 cov(2y,2x)=E(4xy)-E(2y)E(2x)=4Exy-4ExEy --3cov(x,3y)=E(3xy)-E(x)E(3y)=3Exy-3ExEy --4(x^2的意思是 x的二次方 y^2的意思是 y的二次方)由以上四式得cov(x-2y,2x+3y)=2Dx-(4Exy-4ExEy)+ (3Exy-3ExEy)-6Dy=2Dx-6Dy-(Exy-ExEy)=2Dx-cov(x,y)-6Dy 协方差性质 参考
期望收益率、方差、协方差、相关系数的计算公式
1、期望收益率计算公式
HPR=(期末价格 -期初价格+现金股息)/期初价格
例:A股票过去三年的收益率为3%、5%、4%,B股票在下一年有30%的概率收益率为10%,40%的概率收益率为5%,另30%的概率收益率为8%。计算A、B两只股票下一年的预期收益率。
解:
A股票的预期收益率 =(3%+5%+4%)/3 = 4%
B股票的预期收益率 =10%×30%+5%×40%+8%×30% = 7.4%
2、方差计算公式
例:求43,45,44,42,41,43的方差。
解:平均数=(43+45+44+42+41+43)/6=43
S^2=【(43-43)^2+(45-43)^2+(44-43)^2+(42-43)^2+(41-43)^2+(43-43)^2】/6=(0+4+1+1+4+0)/6=10/6
3、协方差计算公式
例:Xi 1.1 1.9 3,Yi 5.0 10.4 14.6
解:E(X) = (1.1+1.9+3)/3=2E(Y) = (5.0+10.4+14.6)/3=10E(XY)=(1.1×5.0+1.9×10.4+3×14.6)/3=23.02Cov(X,Y)=E(XY)-E(X)E(Y)=23.02-2×10=3.02
4、相关系数计算公式
解:由上面的解题可求X、Y的相关系数为
r(X,Y)=Cov(X,Y)/(σxσy)=3.02/(0.77×3.93) = 0.9979
表明这组数据X,Y之间相关性很好!
扩展资料:
1、期望收益率,又称为持有期收益率(HPR)指投资者持有一种理财产品或投资组合期望在下一个时期所能获得的收益率。期望收益率是投资者在投资时期望获得的报酬率,收益率就是未来现金流折算成现值的折现率,换句话说,期望收益率是投资者将预期能获得的未来现金流折现成一个现在能获得的金额的折现率。。
2、方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。统计中的方差(样本方差)是每个样本值与全体样本值的平均数之差的平方值的平均数。
3、协方差(Covariance)在概率论和统计学中用于衡量两个变量的总体误差。而方差是协方差的一种特殊情况,即当两个变量是相同的情况。协方差表示的是两个变量的总体的误差,这与只表示一个变量误差的方差不同。
4、相关系数是最早由统计学家卡尔·皮尔逊设计的统计指标,是研究变量之间线性相关程度的量,一般用字母 r 表示。由于研究对象的不同,相关系数有多种定义方式,较为常用的是皮尔逊相关系数。
参考资料:
方差--百度百科 期望收益率-百度百科 协方差--百度百科 相关系数--百度百科
协方差cov计算公式是什么
协方差的计算公式为cov(X,Y)=E[(X-E[X])(Y-E[Y])],这里的E[X]代表变量X的期望。
从直观上来看,协方差表示的是两个变量总体误差的期望。如果其中一个大于自身的期望值时另外一个也大于自身的期望值,两个变量之间的协方差就是正值。
如果其中一个变量大于自身的期望值时另外一个却小于自身的期望值,那么两个变量之间的协方差就是负值。如果X与Y是统计独立的,那么二者之间的协方差就是0,因为两个独立的随机变量满足E[XY]=E[X]E[Y]。
协方差的特点
协方差差出了一万倍,只能从两个协方差都是正数判断出两种情况下X、Y都是同向变化,但是,一点也看不出两种情况下X、Y的变化都具有相似性这一特点。
相关系数是协方差除以标准差,当X,Y的波动幅度变大的时候,协方差变大,标准差也会变大,相关系数的分母都变大,其实变化的趋势是可以抵消的,协方差的取值范围是 正无穷到负无穷,相关系数则是+1 到-1之间。
版权声明: 本站仅提供信息存储空间服务,旨在传递更多信息,不拥有所有权,不承担相关法律责任,不代表本网赞同其观点和对其真实性负责。如因作品内容、版权和其它问题需要同本站联系的,一经查实,本站将立刻删除。